论文部分内容阅读
针对主成分分析(PCA)求解高阶矩阵计算量很大和模块二维主成分分析(M2DPCA)特征数量仍然较大且有一定的相关性的问题,提出了融合模块2DPCA与PCA的方法进行人脸识别.该方法先通过M2DPCA对子图像进行特征提取,然后把每个图像中的子图像按分块的顺序重新组成新的矩阵,再对新的矩阵进行PCA.在ORL人脸库中实验,结果表明,该算法在一定程度上去除了特征参数间的相关性并大大减少了特征维数.