论文部分内容阅读
With independence assumption, this paper proposes and proves the superior step-size theorem on least mean square (LMS) algorithm, from the view of minimizing mean squared error (MSE). Following the theorem we construct a parallel variable step-size LMS filters algorithm. The theoretical model of the proposed algorithm is analyzed in detail. Simulations show the proposed theoretical model is quite close to the optimal variable step-size LMS (OVS-LMS) model. The experimental learning curves of the proposed algorithm also show the fastest convergence and fine tracking performance.The proposed algorithm is therefore a good realization of the OVS-LMS model.