Chaos Synchronization of an Ellipsoidal Satellite via Active Control

来源 :Progress in Applied Mathematics | 被引量 : 0次 | 上传用户:cangyueshang
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  Abstract
  In this paper, we have investigated the synchronization behaviour of two identical nonlinear dynamical systems of a rotating ellipsoidal satellite in elliptic orbit under the solar radiation pressure evolving from different initial conditionsusing the active control techniquebased on the Lyapunovstability theory and the Routh-Hurwitz criteria. The designed controller, with our own choice of the coefficient matrix of the error dynamics, are found to be effective in the stabilization of the error states at the origin, thereby, achieving synchronization between the states variables of two dynamical systems under consideration. Numerical simulations are presented to illustrate the effectiveness of the proposed control techniques using mathematica.
  Key words
  Chaos; Synchronization; Satellite
  1.INTRODUCTION
  After the pioneering work on chaos control by Ott et al [1] and synchronization of chaotic systems by Pecora and Carroll [2], chaos control and synchronization has received increasing attention [3–7] and has become a very active topic in nonlinear science since last couple of years. Over the last decade various effective methods have been proposed and utilized [8–20] to achieve the control and stabilization of chaotic systems like laser, power electronics etc. The idea of synchronization of two identical chaotic systems that start from different initial conditions consists of linking the trajectory of one system to the same values in the other so that they remain in step with each other, through the transmission of a signal.
  The control of physical systems is an important subject in engineering and sciences, thus, in some applications,chaoscanbe usefulwhilein othersit mightbedetrimentalforexamplechaosin powersystems[21–23] and in mechanical systems is objectionable. On the other hand, the idea of chaos synchronization was utilized to build communication systems to ensure the security of information transmitted [24–32]. Several attempts have been made to control and synchronize chaotic systems [2, 16, 18, and 32]. Some of thesemethodsneedseveralcontrollerstorealizesynchronization. TheOGYmethod,forinstance,havebeen successfully applied to many chaotic systems like the periodically driven pendulum [33] and parametric pendulum [34]. Also, the Pyragas time-delayed auto-synchronization method [35, 36] has been shown to be an efficient method that has been realized experimentally in electronic chaos oscillators [37], lasers[38] and chemical systems [39]. In addition, the delayed feedback control, addition of periodic force and adaptive control algorithm has been utilized to control chaos in a symmetric gyro with linear-pluscubic damping [40].
  In particular, backstepping design and active control have been recognised as two powerful design methods to control and synchronize chaos. It has been reported [41–43] that backstepping design can guarantee global stability, tracking and transient performance for a broad class of strict-feedback nonlinear systems. In recent time, it has been employed for controlling, tracking and synchronizing many chaotic systems [44–48] as well as hyperchaotic systems [41]. According to ref [45], some of the advantages in the method include applicability to a variety of chaotic systems whether they contain external excitation or not; needs only one controller to realize synchronization between chaotic systems andfinally there are no derivatives in the controller. Zhang [41] states that the controller is singularity free from the nonlinear term of quadratic type, givesflexibility to construct a control law which can be extended to higher dimensional hyperchaotic systems and the closed-loop system is globally stable, while ref [49] adds that it requires less control effort in comparison with the differential geometric method.
  The aim of this article is to use the active control technique based on the Lyapunov stability theory and theRouth-Hurwitzcriteriato studythe synchronizationbehaviorofthetwo identicalplanaroscillationof an ellipsoidal satellite in elliptic orbit under solar radiation pressure evolving from different initial conditions.
  2.EQUATION OF MOTION OF A SATELLITE IN AN ELLIPTIC ORBIT
  Elliptically orbiting planar oscillations of satellites in the solar system make an interesting study, and significant contributions to this end can be found in the works [50-58], all of whom have studied the influence of certain perturbative forces, such as solar radiation pressure, tidal force, and air resistance. In the present work, we consider the planar oscillation of a satellite in elliptic orbit with the spin axisfixed perpendicular to the orbital plane. Let the long axis of the satellite makes an angle xwith a reference axis that isfixed in inertial space, the long axis of the satellite makes an angleφwith satellites planet centre line and the satellite to be a triaxial ellipsoid with principal moments of inertia A < B < C, where C is the moment about the spin axis. The orbit is taken to be afixed ellipse with semi major axis a, eccentricity e, true anomalyν,ω20= 3(B?A)/Cand instantaneous radius r. The equation of motion of satellite planar oscillation in an elliptic orbit around the earth under solar radiation pressure, is
  d2x
  3.SYNCHRONIZATION VIA ACTIVE CONTROL
  For a system of two coupled chaotic oscillators, the master system (˙x = f(x,y)) and the slave system (˙y = g(x,y)),where x(t) and y(t)arethe phase space(state variables),and f(x,y) andg(x,y)are the corresponding nonlinear functions, synchronization in a direct sense implies |x(t)?y(t)|→0 as t→∞. When this occurs the coupled systems are said to be completely synchronized. Chaos synchronizationis related to the observer problem in control theory [59]. The problem may be treated as the design of control laws for full chaotic observer (the slave system) using the known information of the master system so as to ensure that the controlled receiver synchronizes with the master system. Hence, the slave chaotic system completely traces the dynamics of the master in the course of time.
  4.NUMERICAL SIMULATION
  For the parameters involvedin system under investigation,e = 0.15, h = 0.1, l = 0.7,μ= 0.02,α= 0.0001, n = 0.1andω0= 0.3andthe initial conditionsformaster andslave systems [x1(0), x2(0), x3(0)] = [0,0.1,0] and#y1(0),y2(0),y3(0)$= [0.1,0.2,0.1]respectively,thesystemhasbeensimulatedusingmathematica. The obtained results show that the system under consideration achieved synchronization. Phase plots of (3.1) and (3.2) (Figure 1), time series analysis of (3.1) and (3.2) (Figure 2) and time series analysis of errors(Figure 3) are the witness of achieving synchronization between master and slave system. Further, it also has been confirmed by the convergenceof the synchronization quality defined by e(t) =G
  5.CONCLUSION
  In this paper, we have investigated the chaos synchronization behaviour of the two identical planar oscillation of an ellipsoidal satellite in elliptic orbit under solar radiation pressure, evolving from different initial conditions via the active control technique based on the Lyapunov stability theory and the Routh-Hurwitz criteria. The results obtained were validated by numerical simulations using mathematica for the proposed technique.
  REFERENCES
  [1]E. Ott, C. Grebogi & J. A. Yorke (1990). Controlling Chaos. Phys Rev Lett, 64, 1196-1199.
  [2]L. M. Pecora& T. L.Carroll (1990).Synchronizationin ChaoticSystems. Phys Rev.Lett, 64, 821-824.
  [3]T. Kapitaniak (1996). Controlling Chaos - Theoretical. Practical Methods in Non-linear Dynamics. London: Academic Press.
  [4]Chen G. & Dong X. (1998). From Chaos to Order: Methodologies, Perspectives and Applications. Singapore: World Scientific.
  [5]A. S. Pikovsky, M. G. Rosenblum & J. Kurths (2001). Synchronization - A Unified Approach to Nonlinear Science. Cambridge: Cambridge University Press.
  [6]M. Lakshmanan & K. Murali (1996). Chaos in Nonlinear Oscillators: Controlling and Synchronization. Singapore: World Scientific.
  [7]A. L. Fradkov & A. Yu. Pogromsky(1996). Introductionto Control of Oscillations and Chaos. Singapore: World Scientific.
  [8]X. Yu & Song Y. (2001).Chaos Synchronizationvia Controlling Partial State of Chaotic Systems. Int. J. Bifurcation & Chaos, 11, 1737-1741.
  [9]C. Wang & S. S. Ge. (2001). Adaptive Synchronization of Uncertain Chaotic Systems via Backstepping Design. Chaos Solitons and Fractals, 212, 1199-1206.
  [10] M. C. Ho & Y. C. Hung (2002). Synchronization of Two Different Systems by Using Generalised Active Control. Phys Lett. A., 301, 424-428.
  [11] M. T. Yassen (2005). Chaos Synchronization Between Two Different Chaotic Systems Using Active Control. Chaos Solitons and Fractals, 23, 131.
  [12] Y. Wang, Z. Guan & H. O. Wang (2003). Feedback and Adaptive Control for the Synchronization of Chen System via a Single Variable. Phys. Lett. A., 312, 34-40.
  [13] N.F. Rulkov,M.M.Sushchik,L.S.Tsimring,H.D.I.Abarbanel(1995).GeneralizedSynchronization of Chaos in Directionally Coupled Systems. Phys. Rev. E., 51, 980-994.
  [14] A. A. Emadzadeh & M. Haeri (2005). Anti-Synchronization of Two Different Chaotic Systems Via Active Control. Trans on Engg., Comp and Tech., 6, 62-65.
  [15] Y. Lei, W. Xu, H. Zheng (2005). Synchronization of Two Chaotic Nonlinear Gyros Using Active Control. Phys. Lett. A., 343, 153-158.
  [16] E. W. Bai, K. E. Lonngren (1997). Synchronization of Two Lorenz Systems Using Active Control. Chaos Solitons and Fractals, 8, 51-58.
  [17] U. E. Vincent & J. A. Laoye (2007). Synchronization and Control of Directed Transport in Chaotic Ratchets via Active Control. Phys. Lett. A., 363, 91-95.
  [18] E. W. Bai, K. E. Lonngren (2000). Sequential Synchronization of Two Lorenz Systems Using Active Control. Chaos Solitons and Fractals, 11, 1041-1044.
  [19] U. E. Vincent (2005). Synchronization of Rikitake Chaotic Attractor Using Active Control. Phys Lett A., 343, 133.
  [20] S. Chen & J. Lu (2002).Synchronizationof an UncertainUnified System via AdaptiveControl. Chaos Solitons and Fractals, 14, 643-647.
  [21] H. O. Wang & E. H. Abed (1993). Control of Nonlinear Phenomena at the Inception of Voltage Collapse. Proc. 1993 American control conference, San Francisco Jun, 2071 -2075.
  [22] E. H. Abed & P. P. Varaiya (1989). Nonlinear Oscillations in Power Systems. Int. J. of Electric Power and Energy System, 6, 37-43.
  [23] E. H. Abed & J. H. Fu (1986). Local Feedback Stabilization and Bifurcation Control, I. Hopf Bifurcation. Systems and Control Letters, 7, 11-17.
  [24] L. Rosier, G. Millerioux, G. Bloch (2006). Chaos Synchronization for a Class of Discrete Dynamical Systems on the N-dimensional Torus. Systems and Control Letters, 55, 223-231.
  [25] T. Yang (2004). A Survey of Chaotic Secure Communication Systems. Int. J. Comp. Cognition, 2, 81-130.
  [26] L. Lu, X. Wu & J. L¨Au(2002). Synchronization of a Unified Chaotic System and the Application in Secure Communication. Phys. Lett. A., 305, 365-370.
  [27] G. A. Lvarez, F. Montoya, M. Romera, G. Pastor (2004). Crypt Analyzing a Discrete-time Chaos Synchronization Secure Communication System. Chaos Solitons and Fractals, 21, 689-694.
  [28] G. A. lvarez, F. Montoya, M. Romera, G. Pastor (1999). Chaotic Cryptosystems. In Larry D. Sanson,(Eds.), 33rdAnnual1999InternationalCarnahanConferenceonSecurityTechnology.IEEE,332-338.
  [29] S. Boccaletti, A. Farini, F. T. Arecchi (1997). Adaptive Synchronizationof Chaos for Secure Communication. Phys. Rev. E., 55(5), 4979-4981.
  [30] S. Hayes, C. Grebogi, E. Ott, A. Mark (1994). Experimental Control of Chaos for Communication. Phys. Rev. Lett., 73, 1781-1784.
  [31] K. M. Cuomo & A. V. Oppenheim (1993). Circuit Implementation of Synchronized Chaos with Applications to Communications. Phys. Rev. Lett., 71, 65-68.
  [32] K. M. Cuomo, A. V. Oppenheim, S. H. Strogatz (1993). Synchronization of Lorenz-based Chaotic Circuits with Applications to Communications. IEEE Trans. Circuits Syst., 40, 626-633.
  [33] G. L. Baker (1995). Control of the Chaotic Driven Pendulum. Am. J. Phys., 63, 832-838.
  [34] J. Starrett, & R. Tagg (1995). Control of a Chaotic Parametrically Driven Pendulum. Phys. Rev. Lett., 74, 1974-1977.
  [35] K. Pyragas (1992). Continuous Control of Chaos by Self-controlling Feedback. Phys. Lett. A., 170, 421- 428.
  [36] K. Pyragas (2001). Control of Chaos Via an Unstable Delayed Feedback Controller. Phys. Rev. Lett., 86, 2265-2268.
  [37] K. Pyragas & A. Tamasiavicius (1993). Experimental Control of Chaos by Delayed Self-controlling Feedback. Phys. Lett A., 180, 99-102.
  [38] B. Bielawski, D. Derozier, P. Glorieux (1994). Controlling Unstable Periodic Orbits by a Delayed Continuous Feedback. Phys. Rev. E.,49, 971-974.
  [39] P. Parmanada, R. Madrigal, M. Rivera (1999). Stabilization of Unstable Steady States and Periodic Orbits in an Electrochemical System Using Delayed-feedback Control. Phys. Rev. E., 59, 5266.
  [40] H. K. Chen (2002). Chaos and Chaos Synchronization of a Symmetric Gyro with Linear-plus-cubic Damping. J. Sound Vib., 255(4), 719-740.
  [41] H. Zhang, X. Ma, M. Li, J. Zou (2005). Controlling and Tracking Hyperchaotic Rossler System Via Active Backstepping Design. Chaos Solitons and Fractals, 26, 353-361.
  [42] P. V. Kokotovic (1992). The Joy of Feedback: Nonlinear and Adaptive. IEEE Control Syst. Mag., 6, 7-17.
  [43] M. Krstic, I. Kanellakopoulus, P. Kokotovic (1995). Nonlinear and Adaptive Control Design. New York: John Wiley.
  [44] A. M. Harb (2004). Nonlinear Chaos Control in a Permanent Magnet Reluctance Machine. Chaos Solitons and Fractals, 19, 1217-1224.
  [45] X. Tan, J. Zhang, Y. Yang (2003).SynchronizingChaotic Systems Using BacksteppingDesign. Chaos Solitons and Fractals, 16, 37-45.
  [46] A. M. Harb, B. A. Harb (2004). Chaos Control of Third-order Phase-locked Loops Using Backstepping Nonlinear Controller. Chaos Solitons and Fractals, 20(4), 719-723.
  [47] J. A. Laoye, U. E. Vincent, S. O. Kareem (2009). Chaos Control of 4-D Chaotic System Using Recursive Backstepping Nonlinear Controller. Chaos, Solitons and Fractals, 39(1), 356-362.
  [48] U. E. Vincent,A. N. Njah, J. A. Laoye(2007).ControllingChaoticMotionand DeterministicDirected Transport in Chaotic Ratchets Using Backstepping Nonlinear Controller. Physica D, 231, 130.
  [49] S. Mascolo ( ). Backstepping Design for Controlling Lorenz Chaos, Proceedings of the 36th IEEE CDC San Diego. CA 1500-1501.
  [50] V. V. Beletskii (1966). Motion of an Artificial Satellite about Its Center of Mass (Jerusalem: Israel Program Sci. Transl.).
  [51] V. V. Beletskii, M. L. Pivovarov, E. L. Starostin (1996). Regular and Chaotic Motions in Applied Dynamics of a Rigid Body Chaos, 6, 155-166.
  [52] R. B.Singh,V.G.Demin(1972).AbouttheMotionofaHeavyFlexibleStringAttachedtotheSatellite in the Central Field of Attraction Celest. Mech. & Dyn. Astron., 6(3), 268-277
  [53] C. Soto-Trevino& T. J. Kaper (1996).Higher-orderMelnikovTheory for Adiabatic Systems. J. Math. Phys., 37, 6220-6249.
  [54] L. S. Wang, P. S. Krishnaprasad, J. H. Maddocks (1991). Hamiltonian Dynamics of a Rigid Body in a Central Gravitational Field. Celest. Mech. & Dyn. Astron., 50(4), 349-386.
  [55] J. Wisdom (1987). Rotational Dynamics of Irregularly Shaped Natural Satellites. A .J., 94, 1350-60.
  [56] J. Wisdom, S. J. Peale, F. Mignard (1984). The Chaotic Rotation of Hyperion Icarus, 58, 137-152
  [57] P. Goldreich & S. Peale (1996). Spin-orbit Coupling in the Solar System. A. J., 71, 425-438
  [58] A. Khan, R. Sharma, L. M. Saha (1998). Chaotic Motion of an Ellipsoidal Satellite I. Astron. J., 116, 2058-66.
  [59] H. Nimeijer, M. Y. Mareels Ivan(1997). An Observer Looks at Synchronization. Circ. Syst. (IEEE Trans.), 144, 882-890.
  [60] L. Zengrong ( ). Several Academic Problems about Synchronization. Science Forum Ziran Zazhi, 26(5).
  [61] L. Youming, X. Wei, X. Wenxian (2007). Synchronizationof Two Chaotic Four-dimensionalSystems Using Active Control. Chaos Solitons and Fractals, 32, 1823-1829.
其他文献
什么是“碰瓷”,可能大部分的人会联想到古玩、零售行业,甚至新兴的“车祸碰瓷”,但是如今出现了新的“碰瓷”形式——“餐饮碰瓷”。简而言之就是顾客在用餐的过程中故意制造异物,从而从餐饮商家那里获得利益,那么餐饮行业遇到“碰瓷”应如何拆招呢?  从饭菜中吃出异物,相信不少消费者都遇到过,而要求商家打折、免单甚至赔偿精神损失,说起来也并不过分。但如果是居心叵测者故意制造的“异物”呢?2016年6月23日,
期刊
为增加白杨素的抗癌活性,结合现有的化合物库设计并合成一种含氨基酸药效基团的白杨素衍生物,并通过生物学手段初步研究其作用靶点和体外诱导肿瘤细胞凋亡机制,为研制新型黄酮类抗癌药物奠定基础。方法:本课题以白杨素,2-溴辛酸乙酯,多种氨基酸甲酯盐酸盐为原料,通过取代、水解、酰化等反应得到了16个新型的白杨素氨基酸衍生物,并通过核磁共振氢谱(1H-NMR)以及碳谱(13C-NMR)进行了结构确证。通过体外细
目的:Apelin是G蛋白偶联受体APJ的内源性配体,前期研究表明,apelin12、17、36及ELABELA浓度依赖性诱导血小板聚集和血栓形成,apelin13则抑制ADP诱导的血小板聚集和血栓形成。本课题进一步阐明不同G蛋白和βarrestin通路介导apelins和ELABELA对血小板聚集和血栓形成的影响。方法:1.应用比浊法检测人、新西兰兔和APLNR+/-小鼠血小板聚集率变化;2.体
鱼皮馄饨是江苏苏州传统菜肴,此菜以捶敲鱼肉成馄饨皮,包虾肉馅成馄饨,其工艺独树一帜。馄饨洁白亮滑、晶莹剔透、柔嫩鲜美,深受当地食客和中外游客的青睐。此菜的制作工艺独特,主要分为选料→拆骨→捶敲→制馅→包馅烧煮五个过程,整个制作过程技术难度并不太高,但每一个工艺流程环节都不能轻视,否者会造成破裂、露馅和口咸,影响成品的质量和特色。  选料:适用捶敲鱼肉成薄片的鱼其必鱼肉细腻洁白、少刺多肉、脂肪含量低
期刊
牛肉,即牛的肌肉组织,系由多量肌纤维、少量脂肪和结缔组织构成的。由于牛的品种、饲料以及生长环境不同,所以其肉品的颜色和质量也有差异。在东北常食用普通黄牛肉,牛肉生时为粉红或棕红色,熟时色泽加深。相对说,公牛、成年牛、育肥牛肉质为上,否则肉质低下。现在许多商贩在市场随时都有宰杀,建议大家还是购买新鲜牛肉制作菜肴为好。据分析:在每百克牛肉中含蛋白质20.1 g、脂肪约10.2 g、无机盐1.1 g,含
期刊
Abstract  In the Present paper we study Ricci solitons in trans-sasakian manifolds. In particular we consider Ricci solitons in f-Kenmotsu manifolds and we provethe conditionsfor the Ricci solitons to
期刊
风眼酸菜    主料:酱好的猪五花肉250 g,东北酸菜。  调料:酱油、精盐、詹王鸡粉、劲霸汤皇、淀粉、高汤、绍酒、葱、姜、大料、油。  制法:1. 将酱好的五花肉切成薄片,将酸菜切好。  2. 用肉片把切好的酸菜卷起来,做成肉片卷,码摆在大碗里,放入葱、姜、大料、酱油、绍酒、詹王鸡粉、劲霸汤皇,蒸透后取出。倒出汤汁,将肉卷酸菜扣入盘中。  3. 将汤汁倒入勺中,调好口味,拢芡,将汁浇在肉卷酸菜
期刊
Abstract  In this paper, we apply thefirst integral method to generalized ZK-BBM equation and Drinefel’d-SokolovWilson system and one-dimensional modified EW-Burgers equation.  Thefirst integral metho
期刊
Abstract  This researchworkpresents new developmentin thefield ofnatural science, wherecomparisonis made theoretically on the efficiency of both classical regression models and that of artificial neur
期刊
Abstract  In the article, the isolated singularity, removable singularity, zero, pole, essential singularity and other concepts and properties were used; Two lemmas on the isolated singularity were pr
期刊