论文部分内容阅读
概率主元分析(PPCA)能够根据过程变量的预测误差及其主元的白化值实现对过程的监控。但是PPCA只适合线性过程,而对非线性过程的监控效果不理想。为克服上述缺点,提出一种基于核PPCA(KPPCA)的过程监控方法,定性讨论了KPPCA模型的参数和主元个数选择问题,构造了高维空间的SPE和T^2监控指标。该方法利用核函数将非线性数据映射到高维空间,去除了过程的非线性,然后利用PPCA对满足线性关系的过程变量映射值进行监控。仿真结果验证了该方法对非线性过程监控的优越性。