基于相关性的多类分类器设计

来源 :第三届中国数据挖掘学术会议(CCDM2009) | 被引量 : 0次 | 上传用户:vickyvictorias
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  典型相关分析(CCA)的目的是通过最大化两组数据间的相关性来抽取典型成分获得降维特征,供其后的分类学习和识别.因此CCA通常仅作为分类学习的特征预处理工具,独立于其后的分类器设计.如此提取的特征未必能保证对分类有利,因而不可避免地会影响分类器的性能.针对此不足,借助正则单纯形的几何特性设计类标号,并分别将其与输入样本作为适合相关处理的两组数据,通过直接最大化样本与其类标号间的个体相关性,设计出一个基于相关性的多类分类器(Correlation-based Multi-class Classifier, CMC),不仅免除了预处理过程,同时也克服了退化至LDA的风险,更好地发挥了相关分析的优势.进一步通过与经验核相结合,获得了具有更强分类性能的核化版非线性分类器EK-CMC.在人工数据集和部分UCI数据集上的实验结果验证了该方法的有效性.
其他文献
会议
会议
会议
会议
会议
本文提出一种基于全局最优的半监督K-means算法,该算法打破传统方法中采用样本类别作为K值的限定,利用少量标记数据即可指导和规划大量无监督数据。结合数据集自身的分布特点及聚类后各个簇内的监督信息,根据投票方法来指导簇中数据集的类别标记。实验表明,本文所提出的方法可以有效的寻找适合数据集的最佳K值和聚类的中心,提高聚类性能。
主题模型(latent topic model)用于提取隐含在文档集中的主题,其中每个主题是语义相关的一些词的多项式分布。主题模型不但可以发现隐含在文档中的语义信息,而且能够按照主题的规模实现文档的维度约简。本文对主题模型的产生背景、研究现状、研究方法以及存在的问题做了较详细的阐述,在此基础上,提出了一种结合词相似性与CRP(Chinese Restaurant Process)的隐主题模型,该模
针对传统支持向量聚类(Support Vector Clustering.SVC)的高耗费和低性能弊端,提出了简约支持向量聚类算法(Reduced Support Vector Clustering.RSVC).RSVC的核心是简约策略和新的簇划分方法.前者提取对模型生成有重要意义的数据构成简约子集,并在此子集之上完成优化过程.后者根据核函数特征空间的几何性质完成数据类别的指定.相关几何性质也给予
利用基因表达谱建立分类模型,找出决定样本类别的一组特征基因是建立有效分类模型的关键.本文对慢性浅表性胃炎脾虚证与正常人、慢性浅表性胃炎脾虚证与脾胃湿热证两组胃肠粘膜配对样本的基因表达谱进行分析.在特征提取阶段分别利用Wilcoxon符号秩检验、组间和组内平方和比率(BSS/WSS),对两组数据分别进行筛选,据此选出特征基因分别为17个和50个,最后基于相关距离的冗余分析方法过滤冗余基因,分别得到9
基于Bayesian理论的相关反馈技术是可有效提高图像检索性能的重要手段之一。然而,当前大多数的Bayesian反馈算法普遍受到小样本问题和训练样本不对称问题的制约。本文提出一种新的相关反馈算法,该算法将查询点移动(Query Point Movement,QPM)技术嵌入Bayesian框架中,并采用不对称的学习策略处理正、负反馈信息,故而称之为不对称Bayesian学习(Asymmetry B