【摘 要】
:
燃料电池是一种可以将储存在燃料和氧化剂中的化学能直接转化为电能的装置,具有高效和环境友好等独特优势,将成为未来新能源体系的重要组成部分。开发高活性且稳定的阴极氧还原催化剂是推进燃料电池大规模商业化应用的关键。本实验将具有高比表面积、分级多孔结构、高导电性的氮掺杂的碳纳米笼(NCNC)作为载体,并采用原位还原法将金纳米粒子均匀地负载于NCNC材料中,制备出一种新型Au/NCNC催化剂。
【机 构】
:
东南大学化学化工学院,江苏,南京,211189
论文部分内容阅读
燃料电池是一种可以将储存在燃料和氧化剂中的化学能直接转化为电能的装置,具有高效和环境友好等独特优势,将成为未来新能源体系的重要组成部分。开发高活性且稳定的阴极氧还原催化剂是推进燃料电池大规模商业化应用的关键。本实验将具有高比表面积、分级多孔结构、高导电性的氮掺杂的碳纳米笼(NCNC)作为载体,并采用原位还原法将金纳米粒子均匀地负载于NCNC材料中,制备出一种新型Au/NCNC催化剂。
其他文献
本文首次采用“一锅法”银纳米粒子刻蚀制得多孔石墨烯,结合其优异的电化学性能与辣根过氧化酶(HRP)对H2O2良好的选择性催化,构建了一种新型的H2O2传感器.对H2O2的检测限低至0.0267nM,线性范围宽达7个数量级.将这种传感器用于活细胞中H2O2的释放检测,得到了满意的结果.图1通过透射电镜,拉曼光谱以及氮气吸脱附曲线证明了多孔石墨烯的成功制备.
二氧化钛作为一种良好的光电材料,近几年来得到了广泛的应用。但这种材料本身具有较大的禁带宽度,光吸收宽度有一定的局限性。因此这种材料在性能有待改进,目前改进的方法也有很多,例如:掺杂贵金属、金属硫化物等等,而我们课题组采用原位改进的方法,使得这种材料具备了近红外吸收的性能。制备近红外光活性的二氧化钛纳米管需要经过两个过程:恒电位阳极氧化;真空淬火煅烧。
二环己基碳二亚胺(DCC)是一种很好的低温生化脱水剂,反应条件温和,合成收率通常较高,故常作为缩水剂或羧基活化剂用于多肽合成.DCC 中的碳二亚胺基团是一类较强的亲电基团,能与生物体内的亲核性物质(如核酸、蛋白等)发生结合从而产生DNA 损伤,引起化学致癌性,在原料药中是一类较强的基因毒性杂质.DCC 本身没有特征紫外吸收,UV 检测器不能获得低含量杂质的准确定量,又因其化学性质不稳定,极易水解,
卟啉是一类多功能的分子电子材料和优异的超分子纳米构筑单元,目前,利用不同表面活性剂合成不同尺寸、形貌的卟啉纳米结构已有大量报导,但对于合成的纳米结构的光电性质及其在免疫检测方面的应用研究还处于起步阶段。本课题以四吡啶基锌卟啉(ZnTPyP)为研究对象,利用阴离子表面活性剂十二烷基硫酸钠(SDS)制备卟啉的纳米结构(ZnTPyPNPs),并拟发展一种新颖的高灵敏的光电化学(PEC)免疫传感器。
磷酸化蛋白通过蛋白酶和磷酸酯酶的作用在细胞学过程中扮演至关重要的角色[1],调控着包含所有原核生物和真核生物在内的几乎所有细胞学过程[2]。然而,由于磷酸化肽的含量低并且磷酸化肽的信号往往被非磷酸化肽的信号所抑制,导致利用质谱进行检测仍是一项困难的任务,因此,磷酸化肽的预处理技术显得尤为重要。
超氧阴离子(O2·-)是活性氧(ROS)中最活泼的成员之一[1],其浓度与人体的病变息息相关,且在体内浓度变化非常大[2],因此,宽的线性检测范围以及超低的检测限对于O2·-传感器的构建来说是必不可少的。本文以L-半胱氨酸(L-Cys)与多壁碳纳米管(MWCNTs)为基质,电沉积银纳米粒子(AgNPs),制备一种新型无酶O2·-传感器(AgNPs/Cys-MWCNTs/GCE)。
Fe3O4磁性纳米材料由于具有良好的磁响应性、较大的比表面积、易分离等优点,被广泛用于靶向药物传递、细胞分离与分子印迹、污水处理等方面1,但在使用过程中Fe3O4依然存在一些问题,如:粒子容易团聚、亲水性差、易氧化等。二氧化硅纳米粒子由于具有良好的生物相容性、较高的热稳定性和化学稳定性,被广泛应用于磁性纳米材料。
发展能够检测癌症细胞的方法对临床诊断尤为重要.我们提出一种利用单分子检测手段同时检测肺癌细胞的方法(Fig.1).分别选取人肺腺癌细胞 A549和 H23的 2种核酸适体,分别标记生物素分子作为捕获探针,标记荧光分子作为检测探针.当目标细胞存在时,通过核酸适体和细胞受体的作用,捕获探针和检测探针结合到相应的细胞上.
近年来我们围绕蛋白质药物输送及其对细胞功能的化学调控开展研究,发展了多种蛋白质化学修饰新原理,并利用纳米药物载体,实现了蛋白质药物的高效输送及对细胞功能和遗传信息的精准调控.主要内容包括:1)设计了氨基和顺式乌头酸酐之间的化学反应修饰蛋白质赖氨酸残基,并利用顺式乌头酸酐修饰产物在弱酸性环境下易发生水解的特点,发展了对弱酸性环境(pH5.5~6.5)敏感的蛋白质化学修饰-脱修饰新方法.
亚硝酸盐(NO2-)是一种应用非常广泛的工业用盐,常被用作食品添加剂或防腐剂[1]。然而,高浓度的NO2-严重危害人体健康和自然环境。因此,有必要发展灵敏度高、稳定性好、分析速度快的检测方法。在本工作中,我们首次构建了一种基于氮掺杂石墨烯量子点负载氮掺杂碳纳米纤维复合材料(NGQDs-NCNFs)的电化学传感器,并将其用于检测NO2-。首先,结合电纺和碳化技术,一步制备NCNFs膜。