【摘 要】
:
采用氧化镁干凝胶包覆方法对尖晶石LiMnO进行表面改性.通过XRD和SEM等方法对包覆后尖晶石表面进行了研究,证实在其表面包覆了一层氧化镁.电化学测试结果表明,改性后尖晶石LiMnO的高温性能有大幅度提高.
【机 构】
:
中南大学冶金科学与工程学院冶化所(长沙)
【出 处】
:
第十一届中国固态离子学学术会议暨固体电化学能源装置国际研讨会
论文部分内容阅读
采用氧化镁干凝胶包覆方法对尖晶石LiMn<,2>O<,4>进行表面改性.通过XRD和SEM等方法对包覆后尖晶石表面进行了研究,证实在其表面包覆了一层氧化镁.电化学测试结果表明,改性后尖晶石LiMn<,2>O<,4>的高温性能有大幅度提高.
其他文献
发展了微波合成Sm掺杂的CeO粉体(SDC),即在硝酸盐溶液中加入过量的尿素,用2.45GHz、功率为300~800W的家用微波炉加热使尿素分解释放OH生成沉淀,加热时间不超过20min,所得的沉淀物经过滤、洗涤、焙烧得到所需的粉体.由XRD分析,显示在500℃焙烧的粉体是面心立方相,由Malvern公司的激光粒度散射仪和TEM分析,显示粉体为粒径分布窄的球型内米超微粉.该粉体压片在1500℃烧结
用内耗和介电谱方法研究了LaAMoO试样,导出的最新结果(其中A=Ca,Bi,K等,x=0~0.3)表明,在内耗-温度谱和介电-温度谱上出现了两个与氧空位短程扩散有关的弛豫峰,这说明氧空位扩散至少有两个不等同的弛豫过程.在560℃左右出现了一个与相变相关的峰.对LaMoO的适当掺杂可以抑制高温相变的发生,从而提高低温下的电导率.掺杂后高温弛豫峰降低而低温弛豫峰略有升高,两弛豫峰都移向高温,氧空位的
采用溶胶-凝胶法制备中温电解质材料CeMO,(M=Nd,Gd.x=0.05,0.10,0.15,0.20,0.30,0.40,0.50)系列样品.通过X-射线衍射分析表明,当0NdO晶胞体积随着掺杂量x增加而增大.CeGdO,晶胞体积随着掺杂量x增加而增大.高温阻抗测量表明样品CeMO电导率随着掺杂量x增加而增高,在x=0.1时达到最大.
用甘氨酸-硝酸盐法合成锶和锰掺杂的镓酸镧超细粉体.XRD分析表明,该粉体在1000℃焙烧4h转变成钙钛矿结构.粉体压片在1500℃烧结,相对密度用Archimedes法测量.经XRD、SEM分析,显示锶和锰掺杂的镓酸镧在还原气氛下具有较高的稳定性.采用交流阻抗谱法测量致密烧结体分别在氢气和空气气氛下的电导率,结果表明,电导率随着锰含量的增加而增加,在氢气气氛中的电导率低于空气气氛中的电导率,表明该
采用固相反应法合成材料,以LiCO和Ni(CHCOO)·4HO为锂镍的源物质,以LaO,YO为稀土源物质,经机械研磨混合后在350~400℃预烧15h,再经研磨后在800℃马弗炉中空气气氛下保温20h固相烧结.初步的XRD测试显示,在静止空气气氛下未得到纯相的LiNiREO(RE=La,Y,O≤x≤0.15);改用在800℃管式炉流动氧气气氛或空气气氛烧结后,LiNiREO成相量明显增大.初步的L
通过交流阻抗谱,研究共沉淀法制备的(CaO/YO)-ZrO材料的烧结性能及电性能.结果发现,得到的频率和电阻阻塞因子的乘积-组合参数αα正确地反映了烧结的致密化过程.对晶粒电导和晶界电导活化能与组成关系的研究表明,随CaO相对含量增加,氧离子通道半径减少及对氧离子空位的缔合作用增强,引起晶粒、晶界电导活化能增加.
以LiTi(PO)为母体,天然高岭石为起始原料,经高温固相反应制得了一系列新的锂快离子导体材料LiAlSc(Sn、Ti)SiPO(以下简称Sc-Sn-Lisicon).X-射线衍射分析表明x=0.1、0.2、0.3,y≤0.6的组成范围内能得到类似于Nasicon的三方结构,即空间点群为R3C的合成物.应用交流阻抗技术测试其电导率,结果表明:x=0.3,y=0.1的合成物在室温下有较高的电导率,为
以室温电导率达10S/cm的锂快离子导体LiAlYbTiSiPO(简称L031)为电解质、Mg为负极、VO和CuCl为复合正极、石墨为集流极来组装电池,电池的结构式为(g)Mg/L031/VO+CuCl(1:2)/C(石墨)(+)该电池在530kΩ的负载下放电时有一长的放电平台为1.80V.当放电电压截止到0.69V时电池的放电容量为4.12mAh,电池的重量比能量为12.79Wh/kg,当电池负
以氢氧化锂、醋酸锰和柠檬酸为原料,通过低热固相反应法合成了尖晶石结构LiMnO样品.X射线衍射分析表明,前驱体的焙烧温度和焙烧时间对LiMnO样品的晶相结构有很大的影响;在焙烧温度高于750℃时,应采用分段焙烧工艺以防止局部高温形成LiMnO杂质.SEM和TEM测试表明,提高焙烧温度和延长焙烧时间可使晶粒充分地生长发育、颗粒的晶化程度提高,并使晶粒尺寸明显增大.
以稀土矿为基体,通过高温固相反应合成通式为(1-x)LiLaTiOLaV(或P)O(x=0.3,0.4,0.5和0.6)锂快离子导体.X射线粉末衍射表明当x=0.3~0.6≥时系统始终是LiLaTiO-LaV(或P)O多相系统,随着LaV(或P)O比例的增加,衍射峰的相对强度发生变化;交流阻抗技术测试表明当x≥0.5系统的离子电导率迅速下降.红外检测表明LiLaTiO-LaVO多相系统中,随着钒比