论文部分内容阅读
提出一种融合底层特征、基于兴趣区域的半监督学习图像检索方法,实现了图像内容的语义关联。该方法首先划分图像兴趣区域,提取图像的综合底层特征,然后将其作为训练数据,对图像类别进行半监督学习,建立图像和类别的语义映射,最后分别采用二次式距离和改进的Canberra距离对图像底层特征进行度量,特征空间中图像类的区域中心用正反馈进行迭代更新。通过实验对比,该图像检索算法具有较高的准确率,优于传统的基于内容的图像检索算法。