基于降阶模型的网格加筋筒壳结构动力优化

来源 :中国计算力学大会2018暨国际华人计算力学大会2018 | 被引量 : 0次 | 上传用户:sunwen_fly
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  网格加筋筒壳结构因其较高的比刚度、比强度被广泛应用于航空航天结构中。火箭、导弹等飞行器结构要求系统固有频率远离发动机的振动频率或仪器固有频率,为了确保结构在动力环境下的安全性,对网格加筋筒壳结构进行动力特性优化是非常必要的。
其他文献
共振碎石化是目前较为先进的一种旧水泥路面改造的施工方法。考虑共振大梁的弹性振动,建立了共振碎石机共振大梁的动力学模型。基于假设模态法,求解了系统参数对其固有频率及强迫响应的影响。结果表明,共振大梁截面尺寸、减振器等效刚度、破碎锤头质量、激振器质量,对其固有频率产生影响,激振力频率及大小会对强迫响应产生影响。改变系统参数可以对其固有频率及强迫响应进行控制,并提出共振系统优化及控制方案。
在航空航天、船舶、汽车、土木、机械等行业中,结构的可靠性与稳定性一直是设计人员所关注的问题。因为结构在工作中,可能需要面对一些恶劣的环境,比如振动、碰撞以及爆炸冲击等。为了避免结构在恶劣工作环境下变形、疲劳损坏等,需要在结构上进行优化设计,这时,设计人员就需要仿真计算技术提供强有力的支撑。其中,冲击过程是一种复杂的动态响应过程,涉及多种物理现象,诸如非线性波传播、摩擦和磨损、大变形、高应变率、动态
The consecutive multiple impact resistance of reinforced concrete pier column becomes the most concern in the engineering field.Numerical simulation the process of consecutive multiple lateral impacts
渐进损伤方法能够有效追踪复合材料结构的损伤起始、演化和极限失效全过程,并可以准确预报失效载荷,因而对于复合材料结构的分析和设计具有重要的意义。性能蜕变模型作为复合材料结构渐进损伤方法研究中的一项重要内容,用于描述损伤后复合材料的基本力学特性,对于准确预测复合材料结构的剩余强度至为重要。
This paper presents an isogeometric analysis(IGA)-based SIMP method for addressing the stress-constrained structural topology optimization problem,with the advantage of integration of computer-aided d
After decades of development,the configuration of topology optimization has been applied to high-precision fields such as machinery,civil engineering and even aerospace.
In most of the existing topology optimization studies of multi-material structures or structures with component layout,the interface of different materials was assumed to be perfectly bonded.
实际工程中存在着很多不确定性,如载荷环境、材料特性、结构尺寸及模型简化等引起的不确定性,而数据信息的不完备很大程度上制约了传统可靠度优化设计方法的应用。本文采用贝叶斯推断方法,针对信息不完备情况(即一部分随机变量或参数的概率分布已知,一部分随机变量或参数概率分布未知但已知有限个样本),开展下结构可靠度优化方法的研究。
There are many uncertainties in the practical engineering,such as uncertainties related with external loads,material characteristics,geometric properties and other factors.
在常用的可靠性优化算法中,双循环法计算量大;单循环法不够稳健;解耦法虽然整体性能较好,但不能避免一次二阶矩带来的的近似误差。本文提出了一种新的基于分位点移动的可靠性优化解耦法。不同于序列优化与可靠性评定法在物理空间对RBDO 问题进行解耦,本方法在概率空间对RBDO 问题进行解耦,通过在概率空间求得约束的偏移距离,从而把可靠度优化问题转化为一系列确定性优化子问题。