论文部分内容阅读
工业生产的迅猛发展产生大量含油废水,造成水体污染问题日益严重,同时严重威胁着生态环境的安全与人类的健康发展。一直以来,含油废水的处理都是业内研究的重点问题。含油废水通常采用物理及化学等方法进行处理,但常规的含油废水处理方法存在处理效率低、产生的油泥量大等问题,因此,寻找高效便捷的含油废水处理技术成为研究者重点关注的内容。磁性纳米吸附材料兼具磁效应和纳米效应的双重特点,且具有比表面积大、吸附能力强、容易回收再生等优点,成为水处理技术中的热点研究内容之一。本文采用液相还原法制备磁性纳米零价铁(nZVI),分别研究其对溶解油废水和乳化油废水的处理,探究nZVI投加量、水样初始pH值、温度和初始油浓度对两种含油废水处理性能的影响,并对结果进行优化。结合吸附动力学、吸附等温线和扫描电镜、傅里叶红外光谱等表征分析了 nZVI对溶解油和乳化油的吸附作用机制。nZVI对溶解油废水和乳化油废水的处理性能研究表明:nZVI对溶解油废水和乳化油废水具有较高的除油率,相比远高于常规吸附材料GAC的处理效果。在nZVI投加量、pH值、温度等多个影响因素中,nZVI的投加量对除油率的影响最为显著,针对特定的油污浓度,需要投加合适的nZVI投量,投加量过小导致出水油浓度不能达标。而水样的初始pH值和温度这两个因素对nZVI对油污的吸附过程影响不大,pH值的增加和温度的升高对油污的去除有稍许促进作用。水样中初始油浓度的增加,导致溶解油和乳化油的去除率有所下降,但吸附剂的吸附容量随着初始油浓度的增加呈现不断上升趋势。吸附再生及重复利用研究结果表明,nZVI的重复利用性能较好,在溶解油废水中重复利用7次时油污的去除率依然维持在90.17%,在乳化油废水中复用6次时油污的去除率仍可达88.70%。nZVI吸附溶解油和乳化油的机制研究表明:采用准一级动力学模型、准二级动力学模型和颗粒内扩散模型进行吸附动力学的模拟分析,结果表明nZVI对废水中溶解油和乳化油的吸附行为均符合准二级动力学模型。等温吸附实验表明该吸附过程符合Freundlich吸附等温线模型,溶解油和乳化油吸附过程的拟合参数n均大于1,说明该吸附容易发生。热力学研究表明nZVI吸附溶解油和乳化油的标准吉布斯自由能均为负值,通过对比溶解油的标准吉布斯自由能绝对值大于乳化油的,这表明前者的吸附过程比后者容易发生。综上可以看出,nZVI对特定浓度下溶解油废水和乳化油废水具有优异的净化效果,能够用作含油废水的处理与净化,同时也为含油废水的快速高效处理提供了相应的技术基础。