【摘 要】
:
有机半导体材料具有结构多样、功能集成、合成便捷以及光谱易调节等诸多优点,在有机电致发光、有机太阳电池以及有机场效应晶体管等领域都有着广泛的应用。从有机半导体分子能量转移过程可知,基态电子会吸收能量会跃迁至激发态,而激发态是一种并不稳定的高能量状态,电子会通过内转换、系间窜越、非辐射跃迁等方式重新回到基态。在这之中的非辐射跃迁方式会使能量以热能的形式散失,并不利于提高有机电致发光和有机光伏器件的性能
【基金项目】
:
国家自然科学基金; 科技部“973”
论文部分内容阅读
有机半导体材料具有结构多样、功能集成、合成便捷以及光谱易调节等诸多优点,在有机电致发光、有机太阳电池以及有机场效应晶体管等领域都有着广泛的应用。从有机半导体分子能量转移过程可知,基态电子会吸收能量会跃迁至激发态,而激发态是一种并不稳定的高能量状态,电子会通过内转换、系间窜越、非辐射跃迁等方式重新回到基态。在这之中的非辐射跃迁方式会使能量以热能的形式散失,并不利于提高有机电致发光和有机光伏器件的性能。然而目前在医学界兴起的一种新型肿瘤治疗方式,即光热治疗,却正是利用激发态材料通过非辐射跃迁的方式将能量转化成热量的特性,使肿瘤局部温度升高,最终抑制癌细胞,达到使肿瘤完全消融或是生长受限的目的。随着科学技术的发展,基于有机半导体材料的光热治疗研究日益兴起,但是已有材料体系的光热转换性能不佳,结构复杂等问题阻碍了光热治疗的发展。针对上述问题,本论文设计并合成了一种新型吸电子单元,喹喔啉并苯并三唑单元,及其共轭聚合物,并将其制备成水溶性的纳米颗粒,最终成功实现了对小鼠皮下肿瘤的光热治疗。具体研究内容分为如下两个部分:(1)设计并合成了新型缺电子单元,喹喔啉并苯并三唑单元,及其给体-受体/型共轭聚合物;通过紫外-可见吸收光谱表征聚合物的光物理性能;采用通用的纳米共沉淀方法制备目标聚合物纳米颗粒;测定了纳米颗粒光物理性能及光热转换性能,其中聚合物PTzQI-BDT的纳米颗粒在808 nm下具有高达64.3%的优异光热转换效率,粒径为90±22 nm,满足进入细胞内部的条件,且具有优异的光热稳定性,便于开展生物试验。(2)对筛选后的PTzQI-BDT纳米颗粒进行细胞以及活体小鼠层面的光热治疗。在细胞层面上,通过细胞毒性实验,活/死细胞双染实验,流式细胞实验验证了PTzQI-BDT纳米颗粒对细胞具有显著的光热治疗效果以及优秀的细胞相容性。在活体小鼠层面上,通过瘤内注射纳米颗粒的方式,来对移植有肿瘤的小鼠进行光热治疗。经功率强度为1.0W cm-2的808 nm激光光照5 min,荷瘤小鼠的肿瘤能完全消融,且在16天的治疗周期内没有复发。最后又通过H&E染色法证实了PTzQI-BDT纳米颗粒对小鼠主要脏器没有明显毒副作用。
其他文献
目前,中性点经小电阻接地系统已逐渐成为大中型城市配电网的主流接地方式,该系统配置的零序保护可有效检测并隔离低过渡电阻的接地类故障。但是,配电网架空线路的现场运行环境较为复杂,因雷击、外力破坏等因素造成的导线断线和接地类故障频繁发生。线路断线后若掉落在非理想导电介质上,也会造成继发的高阻接地故障。传统零序过流保护一般只能切除过渡电阻小于100欧姆的接地故障,对于配网高阻接地故障的检测灵敏度较低。若配
水中重金属对人类健康及生态环境危害巨大,在去除水中重金属的技术中,膜分离技术是一种简单、有效的技术。采用纳滤和反渗透技术处理重金属废水效果好,但能耗高、回收率低;微滤和超滤能耗低,但膜孔径较大,对重金属几乎没有截留作用。因此,开发一种高效吸附分离、低能耗的超滤等膜分离技术,对于去除水中重金属具有重要意义。本文以聚丙烯腈(PAN)为原材料制备PAN中空纤维超滤膜,并引入羧基、胺基和磷酸基等功能性基团
动力总成悬置系统作为整车关键的零部件系统,对整车NVH性能起到重要的作用。设计合理的动力总成悬置系统可以有效地提升整车的NVH性能。由于整车系统复杂、行驶工况多样,在建立理想仿真模型、模拟实际行驶工况、提升悬置开发效率等方面的研究仍存在许多不足。针对以上问题,本课题依托深圳某整车厂动力总成悬置系统的开发项目,以横置动力总成悬置系统为研究对象,重点研究悬置的仿真模型和优化设计方法,旨在实现较高精度的
随着科学技术和制造水平的迅速发展,磁性材料及器件被广泛应用于国防技术、航空航天、微机电系统和信息存储等多个领域。SmCo作为一种高性能稀土永磁材料,是非易失性热辅助磁记录介质的理想候选材料,其以薄膜形态沉积在元器件上提供强的局域磁场也可以满足磁功能器件集成化和微型化的要求。然而SmCo基薄膜存在相组成复杂、磁各向异性不易转变等问题,不利于其在磁功能器件上实现广泛应用。基于此,本文通过引入外场(温度
与传统刚性材料相比,柔性电子材料具有可变形性,与柔性物体、弯曲表面的贴合性好等优势而备受关注。其中,与人类活动息息相关的柔性可穿戴材料主要包括可穿戴传感器、柔性电路以及可穿戴储能器件等功能化模块,实现这些模块的全柔性化有利于实现真正意义上的柔性可穿戴。聚吡咯(PPy)作为导电高分子具有柔性好、成本低、制备过程简单等优点,在功能材料领域具有广泛的应用。本论文利用PPy界面聚合加强其与柔性基底的相互作
随着第五代通信技术的全面商用,对高容量、高速率的光纤通信网络需求不断增加,作为现代光纤通信网络中的重要组成部分,光纤放大器的增益带宽是影响通讯容量的一个重要因素,但由于Er3+离子的窄带发光,光纤放大器的增益带宽受到了限制。目前,各类光放大器还难以取代掺铒光纤放大器应用于实际光纤通信网络中。可实现宽带光放大的增益介质材料中,过渡金属离子掺杂发光材料和Bi离子掺杂发光材料的近红外发光较宽,但发光效率
随着海洋强国建设的不断推进,水声通信的应用范围也得到了扩展。传统低速率传输的水声通信技术已难以满足信息需要实时处理的领域,实现高速率的水声通信传输技术变得非常重要。超奈奎斯特(Faster Than Nyquist,FTN)技术可以打破奈奎斯特准则,使系统获得更高的传输速率,但会引入额外的码间串扰(Inter Symbol Interference,ISI),再加上水声信道的强时变多径效应,会导致
随着人们认识到可再生能源的重要性以及其作为未来主要能源的巨大发展潜力,可再生能源在微电网中的渗透率不断增加。但可再生能源发电系统的间歇性、随机性和不可预测性等特点导致其在接入微电网时,会出现输出功率与负荷需求不匹配的情况,影响直流微电网内的功率平衡,造成直流微网无法稳定运行。目前解决上述问题最有效的技术手段是在微电网中部署储能系统,通过储能系统吸收/释放不平衡功率维持网内整体的功率平衡。混合储能系
化石燃料日益枯竭和环境污染不可避免地威胁着世界的发展和经济的增长。微藻被认为是生产第三代可再生生物燃料的原料,以其优良的生物油生产能力,有望解决未来能源短缺的问题。近年来我国城市生活垃圾产生量增长迅速,处理不当不仅会对生态环境造成危害,而且会浪费了其应用于能源生产的潜力。热解技术可以实现垃圾减量化、资源化和无害化的处理目标,并且具备比其他热化学反应更高能量回收效率。为了获得品质更高的生物燃料,垃圾