【摘 要】
:
离子通道膜中纳米孔道的大小与密度是影响其盐差能转换的重要因素,然而,现有技术对于孔径孔密度的调控存在操作复杂、成本高等问题,因此,制备孔径和孔密度可控、孔道排列规整的纳米通薄膜仍旧是技术难点。由于嵌段共聚物的特殊性,通过合理设计和精准合成,可用于制备理想的离子通道膜。本文通过合理的分子设计,合成了可用于制备纳米通道薄膜的嵌段共聚物,并通过核磁共振氢谱、红外光谱、凝胶渗透色谱测试对其结构、分子量、多
论文部分内容阅读
离子通道膜中纳米孔道的大小与密度是影响其盐差能转换的重要因素,然而,现有技术对于孔径孔密度的调控存在操作复杂、成本高等问题,因此,制备孔径和孔密度可控、孔道排列规整的纳米通薄膜仍旧是技术难点。由于嵌段共聚物的特殊性,通过合理设计和精准合成,可用于制备理想的离子通道膜。本文通过合理的分子设计,合成了可用于制备纳米通道薄膜的嵌段共聚物,并通过核磁共振氢谱、红外光谱、凝胶渗透色谱测试对其结构、分子量、多分散性指数进行了表征和确认。进一步制备了具有不同孔径和孔密度的纳米通道薄膜,并通过红外光谱测试、纳米压痕测试、透射电子显微镜测试、原子力显微镜测试,验证了孔径、孔密度可控的离子通道膜的成功制备。由于制备的纳米通道内壁含有巯基并在H2O2氧化后会形成磺酸根离子,通过对其进行离子传输测试,探究其在实现盐差能的高效转换的可能性。首先,通过设计含有二硫键的链转移剂、二苯基丙烯酮类和香豆素苯乙烯单体,设计了可光交联和DTT(二硫苏糖醇)还原降解的嵌段共聚物PEO-b-PChal,并通过硫交换反应合成大分子链转移剂、可逆的加成-断裂链转移(RAFT)聚合的方式合成两类不同分子量,具有一系列PEO质量分数的嵌段共聚物。通过TGA测试表明聚合物具有较好的耐高温性能。通过DSC和偏光测试发现其具有相应的液晶性有利于后期的自组装。使用在波长为365nm紫外光照射并测试紫外吸收和透过率,随着光照时间的增加在相应π-π*的跃迁处的吸收强度随之降低,说明交联程度不断增加,并且在可见光波段都具有良好的透过率。进一步,利用所得嵌段共聚物PEO5k-b-PChal通过热退火方法自组装,得到六方柱状相结构,通过紫外光交联和DTT还原降解形成纳米孔道,进一步使用双氧水将孔道中的巯基氧化成磺酸根离子获得具有阳离子选择性的离子通道膜。纳米压痕测试结果表明其具有良好的力学性能。TEM和AFM测试结果中证实了离子交换膜中纳米孔道的生成。通过电化学测试表明纳米孔道中含有磺酸根离子的膜选择性传输阳离子,将其应用在盐差电池中,在浓度梯度为500倍时,其输出功率为1.28W/m~2。
其他文献
搅拌摩擦焊(Friction stir welding,FSW)技术作为一种高效的固相连接技术,在满足航空航天高比强有色金属的高可靠、长寿命、低成本连接方面具有独特的优势。获取高服役性能的FSW焊接接头已成为航空航天制造技术提升的关键。然而,FSW成形的基础为形成一个高温高应变速率的摩擦大变形体,且摩擦大变形体流动行为又决定了FSW接头的微观组织及最终力学性能。因此,本文通过标记材料示踪法,揭示F
再生混凝土是一种用再生骨料来代替部分或全部天然骨料的新型建筑材料,随着再生混凝土技术在建筑结构领域中的广泛运用,其耐高温性能是建筑结构设计中必须考虑的一个重要因素。为研究玻璃纤维对再生混凝土高温性能的改善效果,设计抗压强度等级为C30的混凝土,制作288个立方体试件,进行常温与高温试验,并观察试验现象,之后对这些试件进行高温后的力学强度试验,初步探讨了玻璃纤维改善再生混凝土高温后力学性能的机理。主
随着传统建筑业的不断转型升级,建筑工业化成为必然趋势,装配式建筑则是实现建筑工业化的重要途径。装配式剪力墙结构是装配式建筑的重要结构形式之一,它符合高层建筑经济性要求和建筑工业化发展需要,具有广阔的应用前景。但目前国内外已有的装配式剪力墙结构存在整体性和面外稳定性偏低、接缝连接构造复杂、塑性变形能力较弱等缺点。鉴于此,课题组提出了一种新型的装配式钢套管组合剪力墙,本文对其在竖向受拉与水平荷载共同作
现如今全球能源危机与日益严重的环境污染问题推动了电动汽车的发展,而我国是一个富煤缺油少气的国家,伴随着国内汽车保有量的逐年上升,电动汽车的研究也成为我国当下热点之一。为了使电动汽车安全高效的运行,电池作为电动汽车核心,能对其进行有效管理的电池管理系统不可或缺。电池管理系统中荷电状态的准确估算,既能够防止电池过充过放,又能够作为低电量限流阈值还能作为整车控制策略阈值。其中剩余寿命的预测,可以为用户提
近年来,随着航空发动机涡轮进口温度不断提高,航空工业对发动机主要承力部件——涡轮机匣的耐高温、抗腐蚀性等要求愈加严苛。在机匣的铸造过程中,合金熔体与陶瓷型壳在高温下长时间紧密接触,容易发生多种复杂作用,导致铸件表面产生严重粘砂,表面粗糙度增大,表面质量下降。本工作研究承力机匣铸造用K423A合金与Zr Si O4陶瓷型壳间的界面反应行为,分析温度及保温时间对于界面反应的影响;研究K423A合金中主
钢结构是一种集节能、高强、方便等优点于一体的具有较好发展潜力的结构体系。自上个世纪两次严重的地震造成的破坏给传统钢结构体系带来巨大冲击之后,大量学者对如何提高钢结构体系的整体可靠性展开了研究。为了避免节点发生脆性破坏,许多学者提出一种提高节点延性和耗能的新型节点构想,其原理是将塑性铰远离节点域而形成于梁内。目前,对强轴梁端连接的方式已经开展了大量的研究工作,对弱轴连接的研究相对较少。本文对梁柱局部
可再生能源是人类延续和社会进步需要重点关注的方向,随着便式电子设备在人们日常生活中的普及,电池已被广泛用作一种高效的电化学储能装置。水系锌离子电池(Aqueous zinc ion batteries,AZIBs)以其高理论容量(819 mAh·g-1),低负电位(-0.763 V vs.SHE),高性价比而成为可充电水性系统中的一种电池,已逐渐进入人们的视野。尽管有这些优点,AZIBs应用的关键
随着现代电机电磁负荷增强,电机内各部件温度也相应升高,而温升过高则会直接影响电机使用寿命和运行稳定性。因此,研究电机内温升的计算及冷却结构的强化具有重要意义。论文主要由以下内容组成:1、通过分析国内外目前对通风冷却电机内流体场和温度场研究进展,借鉴电机领域电磁场、流体流动和传热相关原理,采用轴径向混合通风冷却结构并优化其结构参数,用于降低电机温升,强化冷却性能。2、以一台YJK450-6、400k
过渡金属氧化物的理论比容量是商用石墨负极的2~3倍,并具有良好的安全性,因此被认为是极具应用潜力的负极材料之一。在过渡金属氧化物负极材料中,Fe3O4和SnO2都具有较高的理论比容量,分别为926 m Ah/g和1494 m Ah/g。但是它们在Li+嵌入/脱出的过程中会出现较大的体积变化,Fe3O4的体积膨胀为100%,而SnO2的体积变化更加剧烈,可达300%,导致锂离子电池无法实现长循环和快
溴化锂吸收式制冷系统中LiBr-H2O溶液对不锈钢、铜和铜合金都具有较强腐蚀性,直接影响制冷系统的使用寿命且造成系统性能下降。钛合金具有耐腐蚀性极好、密度小、硬度大等优点,成为一种代替铜合金制造换热管的良好选择。但是钛导热系数仅为18.7W·m-2·K-1,远低于铜铜导热系数401W·m-2·K-1。因此,研究钛管外液膜流动行为及相关传热特性,开发高换热性能钛材管有着十分重要意义。本文通过对水平管