论文部分内容阅读
设G是有限非交换群,χ为群G的非线性不可约特征标,则有|G/kerχ|=.χ(1)对某个tχ ∈ N成立.并且若χ(1)2||C/kerχ|对(?)χ ∈ Irr(G)成立当且仅当G为幂零群.由此我们考虑|G/kerχ|/χ(1)可能对群G结构的影响.首先研究了一般情况,即 |G/kerχ| ≤ Pmχ(1)2 对任一 χ ∈ Irr1(G)都成立,其中 为 |G/kerχ|的最大素因子.利用有限单群分类定理得到G非单.进一步地我们考虑了这样的群G的可解性.下面列出本文主要得出的结论:定理3.4若非交换群G满足|G/kerχ|≤pmχ(1)2,其中pm为|G/kerχ|的最大素因子,χ ∈ Irr1(G).则G一定非单.定理3.5若非交换群G满足|G/kkerχ| ≤ pmχ(1)2对任意χ ∈ Irr1(G)都成立,其中pm为|G/kerχ|的最大素因子.如果群G是不可解群,则其极小正规子群为李型单群.