论文部分内容阅读
化工动力多联产系统通过系统集成和过程革新,实现能源的高效、洁净利用,已成为能源可持续发展的核心技术之一。本学位论文依托国家重点基础研究发展规划973计划项目及自然科学基金项目等,针对多联产系统集成和开拓的关键科学问题,开展多联产系统集成理论和节能机理的研究;并依据化学能物理能梯级利用原理,和焦炉煤气的生产特点和利用现状,展开新系统的开拓研究。阐明多联产系统中化学能的梯级利用机理。首先,从宏观上分析多联产系统节能的潜力和优势,并阐述多联产系统系统集成的原则和依据。然后,着重研究联产系统化学能梯级利用的节能机理,发现在化工生产过程中,产品的(火用)耗随着转化率的提高,呈非线性增加。对单位产品的(火用)耗分析表明,随着转化率的增加存在着单位产品(火用)耗最小的点。进而采用比较法阐述联产系统相对于分产系统节能的本质原因,即原料的适度转化。最后,揭示了动力岛热(火用)收益与化工岛(火用)损失减少的耦合关系。炼焦工艺与焦电联产新系统的研究提出。针对传统炼焦工艺中直接将炼焦副产的焦炉煤气的一半左右回炉燃烧的用能方式,提出采用燃煤替代焦炉煤气燃烧获得炼焦热的新型燃煤焦炉。焦炉煤气是富氢的高品质原料,采用新型炼焦工艺,可以节省更多的焦炉煤气,为后继的系统提供更多的合成气。针对焦炉生产过程中,由于烟气与空气的固有特性使得排烟温度过高的现象,提出了并联型焦电联产系统,进一步同收焦炉排烟的废热,并采用高效的联合循环使气体燃料焦炉煤气得到充分高效的利用。双气头整合的多联产系统集成优化。侧重太原理工大学提出的采用焦炉煤气与气化煤气互补制得合成气的双气头多联产系统进行优化分析,集成了无重整的双气头甲醇电力多联产系统。对新系统进行的热力性能及特性分析表明新系统具有优良的热力性能,进而采用(火用)分析的方法进一步揭示系统的节能机制,即重整和变换过程的取消。新系统使流程简化,投资减少,且能够取得更好的节能收益。最后,在此系统的基础上,集成了带CO2回收的多联产系统,该系统相对于分产系统实现了无能耗分离CO2。焦炭、化工与电力一体化多功能系统的开拓创新与集成优化。本部分首先集成了焦炭、氢、电多功能系统,此系统根据焦炉煤气富氢量的特点,采用PSA的方法分离出氢气,分离出氢气后的弛放气作为联合循环的燃料发电。热力性能分析结果表明在相同的原料输入和相同的炼焦热输出情况下,本系统可以比分产系统多输出65%的氢气。新系统的热效率达到70%,(火用)效率约66%,节能率约12.5%。图像(火用)分析法表明燃煤焦炉实现了煤炭的间接气化是系统节能的最重要因素。该系统在经济性以及减排性能等方面也表现出了很大的优势。最后,将燃煤焦炉与双气头多联产系统相结合,集成了同时生产焦炭、甲醇和电力的多功能系统。总之,本研究为多联产系统的集成提供了若干理论依据,为洁净煤技术的发展提供了更多的新方法。