论文部分内容阅读
低阶煤具有含水量高、挥发分高等特点,直接燃烧浪费了大量的富氢组分且污染环境。基于热解的煤炭分级转化多联产技术可提取煤中的高附加值组分,是实现煤炭清洁高效利用的重要技术之一。针对目前低阶煤存在的综采过程中碎煤比例大,现有热解工艺焦油产率不高且含尘量较高等问题,浙江大学提出了以半焦为热载体的低阶煤双流化床热解分级转化技术,通过流化床煤热解炉和循环流化床半焦加热炉的有机结合,实现大规模碎煤颗粒的热解分级转化,获得高产率焦油和高品质煤气。分级转化产品用途广泛,焦油可通过加氢工艺制取轻质液体燃料,有助于缓解当前我国石油对外依赖逐年增长的能源风险。半焦可用于大容量煤粉锅炉的混合燃烧或生产型煤用于供暖,也可通过水焦浆气化技术生产合成气,实现热解半焦的高效低污染利用。高品质热解煤气可用于制取替代天然气或合成化工产品。通过不同利用方案的灵活组合,实现低阶煤资源的梯级利用。目前,焦热载体对流化床热解产物分布和影响规律的认识尚不充分,同时焦热载体条件下双流化床热解分级转化多联产系统的全流程模拟及技术经济性分析缺乏深入、可靠的评估,本文依托国家重点研发计划项目,开展了相关实验研究和系统流程模拟,为焦热载体条件下低阶煤双流化床热解分级技术的大规模工业应用提供参考。首先,以我国典型低阶煤-新疆润北煤为原料,在小型鼓泡流化床反应器上开展了不同热解温度(500-800~oC)、不同热载体(石英砂、焦热载体:原煤=1:1、2:1、3:1和5:1)以及模拟热解气气氛下的流化床热解实验研究,获得了焦热载体条件下温度、热载体种类及比例和热解气气氛对煤流化床热解产物特性的影响规律。结果表明,作为热载体的半焦在流化床热解过程中影响煤颗粒的加热过程,对热解一次反应具有促进作用,主要表现在促进煤中酚类的析出和裂解、羧基的裂解和焦油中重质组分的分解,从而提高焦油和煤气产率,降低半焦产率。中低温时焦热载体的裂解促进作用更为显著,而较高温度时高温裂解作用占据主导地位。焦载体条件下的半焦拥有更为发达的孔隙结构,但燃烧性能变差。随着焦载体添加比例的增加,煤气产率逐渐增加,而焦油产率先增加后降低,在添加比例为2:1时达到峰值;半焦产率则逐渐降低。焦热载体条件下CH_4产率的增加来源于煤中脂肪族结构,而H_2和CO产率的增长主要来源于焦油中酚类的分解和大分子物质的缩聚。研究发现作为热载体的半焦具有一定的固硫作用。焦载体添加比例从1:1增加到5:1,焦油中重质组分含量下降了约6个百分点,焦油品质提升,焦油中的酚类分解为芳烃类物质。热解气气氛下,焦载体对CH_4和CO_2重整的催化作用以及H_2对热解的促进作用使得半焦产率低于惰性气氛,而焦油和热解水产率相对较高。然后在1MWt双流化床试验装置上开展了两种煤样不同热解温度(580~oC、630~oC和680~oC)的中试试验研究。研究发现,两种煤样均适合于双流化床热解工艺,热解炉和循环流化床半焦加热炉之间的物料循环正常,系统运行稳定。热解炉运行温度能够通过调节双炉之间的物料循环量以及燃烧加热炉的炉温来控制。两种煤样在630~oC时焦油产率取得最大值,分别为10.84%和13.27%,均超过格金干馏分析的90%。研究工况下,煤气品质较高,组分中CH_4含量丰富,体积占比约为35%-40%,CO和H_2体积份额在25%-35%之间。焦油组分中沥青质占比40-50%,提高热解温度可以促进沥青质和饱和烃的裂解,生成芳香烃和其他非烃类物质。热解炉二级旋风飞灰比电阻满足高温静电除尘运行要求,实际工业应用中可根据需要布置高温电除尘以获得更高品质的油气。在试验研究的温度范围内,调节双炉运行温度可在一定程度上实现热解产品的品质调控,进一步验证了双流化床热解分级转化技术的可行性,为下一步是示范装置的设计和运行提供了技术支撑和调控经验。利用AspenPlus,构建并模拟了耦合2×660MW超超临界半焦煤粉炉发电的低阶煤双流化床热解分级转化多联产系统。在模拟方案中,半焦送入煤粉锅炉发电单元通过超超临界参数蒸汽发电,焦油提酚后采用非均相悬浮床加氢工艺合成石脑油和柴油,所需的H_2全部来自于煤气深加工环节,热解废水送入酚氨回收单元。根据市场行情和产品特点设计了三套不同的煤气深加工路线。在方案A中,煤气首先经过Selexol单元脱硫净化,净化后的煤气送入甲烷水蒸气重整单元,经变压吸附单元提取焦油加氢所需的H_2后用于合成甲醇,重整所需热量通过燃烧甲醇合成单元和焦油加氢单元的尾气提供;在方案B中,将部分净化后煤气送入甲烷水蒸气重整单元,与未重整净化煤气混合后进入CO变换单元,经变压吸附单元先后脱除CO_2、提取CH_4和H_2,其中H_2全部用于焦油加氢,此方案重整热量来自提H_2后尾气与焦油加氢尾气的燃烧。方案C则需要燃烧部分煤气提供重整热量,剩余煤气经重整、变换、脱除CO_2后,利用变压吸附技术提取H_2,除用于焦油加氢外全部作为产品输出。针对三套方案的技术路线,开展了全流程系统模拟和技术经济性分析,并与超超临界发电系统进行了热力学和经济学性能参数的对比。结果显示,在双流化床热解系统给煤量为628t/h的情况下,三套方案均可产出10.33t/h粗酚、24.80t/h石脑油和31.46t/h的柴油。同时,方案A还可联产甲醇65.34t/h和净发电1314.48MW,火用效率为51.15%;方案B联产替代天然气(SyntheticNaturalGas,SNG)35699.12Nm~3/h,供电约1445.86MW,火用效率为51.98%;而联产17.60t/hH_2和净发电量为1292.73MW的方案C拥有最高的能量效率和火用效率,分别为56.33%和53.99%,比同等规模的超超临界电厂分别高出10.51和11.19个百分点。三种多联产方案固定资产投资差异不大,其中方案C略高(约69.23亿元人民币),比超超临界电厂投资约高21亿元人民币。方案A、B和C的税后内部收益率分别为23.24%、21.83%、29.52%,均高于超超临界电厂的17.56%。其中方案C的投资回报期最短,为5.06年(静态)和5.74年(动态),经济效益优势最为明显。从抗风险能力的角度分析,影响三套多联产方案经济效益的主要因素是年运行时间和原料煤采购价格。当年运行时间骤减和煤炭价格上涨时,三套方案仍然具有较为可观的财务状况,其中方案C收益率的变化幅度最小,抗风险能力最强。三套方案在能量利用效率、经济性和抗风险能力方面都具有十分明显的优势,市场前景好、产品方案设计灵活。