基于深度学习的图像超分辨率重建技术研究

来源 :天津大学 | 被引量 : 0次 | 上传用户:cheayu123
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着信息时代的发展,数字设备越来越普及,数字图像在信息传播中的作用越来越重要,人们对于提高数字图像的分辨率需求越来越迫切。图像超分辨率重建主要是对一幅或者多幅低分辨率图像,结合先验知识,恢复出相应的同一场景的高分辨率图像。深度学习算法可以自动地直接从数据中学习输入和输出之间的映射关系,这就克服了传统算法需要人工设计特征的难题。大量实验证明基于深度学习的图像超分辨率重建算法取得了比传统算法更好的效果,因此基于深度学习的超分辨率重建成为研究热点。在卷积神经网络被引入到超分辨率重建领域后,出现了大量的改进算法,基于残差学习的算法和基于注意力机制的算法在提高模型性能,加快网络收敛方面表现优异,因此本文针对以上两种机制展开研究。首先探讨了经典的使用卷积神经网络进行超分辨率重建的算法,并针对其不足展开分析,并引入了残差学习机制。围绕残差学习,从深度残差网络到Inception结构,分析两者的优势和缺陷,提出了改进的密集残差结构,对Inception网络不同分支采用相同拓扑结构,并在分支内部采用密集连接的方式,提高网络的拟合能力和扩展性。在上采样阶段,使用亚像素卷积层,改善棋盘效应的影响,提升了重建图像质量。此后针对注意力机制,介绍了三种经典的注意力模型。为了克服注意力图计算量大的问题,本文引入了期望最大化机制,并在此基础上,提出了更适合超分辨率重建任务的局部期望最大化机制,通过边缘检测将图像分为不同区域,在不同区域迭代出一组紧凑的特征基,然后在这组特征基上计算注意力图,大大降低计算复杂度。将改进的密集残差结构和局部期望最大化注意力机制相结合,提出了基于局部期望最大化注意力模型。提出一种改进的感知损失函数,并结合可以反映图像结构的MS-SSIM损失函数,旨在更好地恢复图像高频细节。实验结果表明该模型可以恢复更真实自然的纹理细节,重建图像主观质量得到明显提升。
其他文献
运动目标的检测也就是人们常说的追踪问题,它是计算机视觉的重要组成部分。其相关的方法有很多种,其中光流法描述的是图像中像素点灰度值的变化趋势,也就是像素点的运动速度矢量场。在过去的几年中,深度学习在计算机视觉和自然语言处理等各种问题上都取得了很好的效果。而随着卷积神经网络的理论逐渐成熟,其相关研究逐渐深入到光流特征图评估的领域。本文提出了一种称为快速光流单元的网络子结构,它使原网络能够通过一种快速并
随着互联网时代的到来,视频的制作以及传播越来越便捷,视频数据大规模增长,拍摄视频逐渐成为了很多人分享生活内容的一种方式,但同时也产生了大量重复视频。视频内容具有一定的经济价值,视频盗版的行为损害了视频制作方的利益,同时也会增加视频网站的带宽和存储成本,不利于视频平台的发展。现今视频网站会根据用户喜好推荐视频,推荐重复的视频会极大影响用户的观看体验。因此需要借助计算机技术识别重复视频。本文提出了一种
人工智能关注智能体的智能行为,比如在战略性遭遇战中打败人类或者在认知任务中胜过人类。联盟博弈可以用来模拟经济、政治和许多其他社会领域中出现的各种问题,这是一种混合动机(竞争和合作)博弈,其中参与者通过战略谈判来决定组成什么联盟以及如何在联盟成员之间分配收益。虽然联盟博弈理论中存在大量的工作,但联盟形成的过程却很少受到关注,特别是当智能体与人类交互而不是与其他自治主体交互时的联盟过程。人工智能在此类
交通速度预测是智能交通系统中必不可少的环节。由于交通环境的复杂性,预测未来的交通速度十分困难。已有文献中提出使用支持向量回归(SVR)、回归神经网络(RNN)等多种机器学习模型进行交通流预测。然而,对于交通流的预测,尤其是对多步交通速度的预测,目前有关使用集成模型解决的研究较少。集成模型通过对多个基模型的组合,可以提高模型的泛化能力和准确率。但目前的集成组合方式比较单一,例如使用平均集成,加权集成
本文主要针对多智能体协同控制问题进行研究。多智能体系统是环境中多个自主智能体交互组成的计算系统,实现多智能体协同控制是提升整体效益的关键。多智能体协同控制的目标是生成一致性策略,其中,最终多智能体收敛到的主导策略称为社会规范。社会规范的涌现是保证智能体协作的关键。针对大规模分布式多智能体系统,由于系统中不存在中心式的控制节点,较难在智能体还未进行交互前直接生成协作策略,因此,研究针对复杂社会网络结
长短时记忆网络适合于处理长序列依赖问题,对于水文径流这种受长时间间隔的气象等因素影响的复杂过程能够有很好的处理和模拟能力。本研究基于长短时记忆网络以泾河流域为例建立四种模型,分别是直接预测模型、差分预测模型、平均值预测模型和复合校准模型,目标是对流域的月平均径流量进行预测。复合校准模型和平均值模型在新安江上也有很好的模拟预测能力,证明了模型的有效性、可用性和可泛化性。在掌握了准确水文数据的情况下,
随着人工智能技术取得了前所未有的发展,以知识图谱为代表的知识工程以及深度学习等相关领域得到了广泛的关注。知识图谱的概念最早是由谷歌于2012年正式提出的,它是新一代知识库,主要用来描述真实世界中存在的各种实体和概念,以及他们之间的关系。知识图谱能够弥补机器学习、深度学习算法的描述能力,规则等表示形式与神经网络相比是显性的知识,因此可基于此对学习的结果,例如链接预测,提供人类可理解的解释。本文针对规
气敏传感器可以检测环境中的特定气体,在易燃、易爆、有毒、有害气体的检测中应用非常广泛。气敏材料对气敏传感器的性能有着至关重要的影响,在众多气敏传感器中,金属氧化物半导体气敏传感器因其气敏材料制备简单、绿色环保、气敏性能优异等优点受到国内外研究者的高度关注。ZnSnO3是一种具有钙钛矿结构的三元复合金属氧化物半导体,它兼具Zn O和Sn O2两种材料的特点,表现出优异的气敏性能。但与许多二元金属氧化
计算机断层扫描(Computed Tomography,CT)以非入侵的方式获得被测人体内部组织的断层影像,逐渐成为近年来医学成像领域的研究热点。能谱CT利用不同能量光子关于物体衰减的差异性进行成像,能够提高传统CT的物质分辨能力,提供准确的材料分离和定量化信息。目前,多能量投影数据处理中常用的物质分解法受噪声影响严重,导致低剂量条件下重建图像的信噪比较低。本文以低剂量能谱CT成像为目标,利用深度