论文部分内容阅读
一台智能的计算机应能观察、理解人类情感并根据使用者的情感自动调整交互环境。如何使计算机能够准确地识别人类的情感具有重大的理论和实际意义。人类情感识别主要包括:表情情感识别,语音情感识别,生理信号情感识别等。语音情感识别作为人类情感识别的重要部分越来越受到国内外研究人员的重视,在计算机已知人类语音的前提下,通过分析处理语音中包含的情感信息,自动识别出说话人的情感类别,是智能人机交互的重要组成部分。语音情感识别的研究包含:语音信号情感特征分析,提取语音情感特征方法,建立语音情感识别模型,语音情感识别算法。本文的主要研究工作有以下部分:(1)在语音特征提取部分,如何提取能充分代表人类情感的特征参数对于语音情感识别具有不可替代的重要意义。我们发现语音的时域特征最能充分表达人类的情感差异,因此我们提出提取语音信号中最能体现人类情感的时域特征作为语音识别的特征参数,这些特征参数主要包含语音时间构造、振幅构造、共振峰构造。(2)在语音情感识别阶段,提出用模糊规则用于语音情感识别,因为模糊规则在模型不清楚的环境中有着出色的表现。由于WANG算法在决策融合阶段采用乘积的方式,存在易于将有用案例剔除的情况,因此,我们提出在决策融合阶段用均值的方式对WANG算法进行改进,用于语音情感识别。用改进的WANG算法对语音特征提取模糊规则,然后应用得到的模糊规则对语音进行情感识别。然后应用学习得到的模糊规则对语音情感进行分类,取得不错的分类率。(3)在语音情感识别阶段,本文在深入研究基于案例的推理(CBR)和WANG算法的基础上,提出了一种将两者融合的方法,即基于模糊规则的案例推理。该方法不但充分体现了模糊规则在模型不清楚情况下的优点,同时还拥有基于案例的推理在使用已解决案例为解决新问题的优越性。(4)本文采用柏林语音情感库作为训练和测试样本库,对上述方法进行了检验,通过实验结果可以看出本文提出的方法具有较好的情感识别率