连接受限的网联无人机的轨迹与传输策略研究

来源 :南昌大学 | 被引量 : 0次 | 上传用户:evaclamp
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在众多无人机(Unmanned Aerial Vehicle,UAV)的应用中,蜂窝网联无人机(Cellular-connected UAV)伴随着5G移动通信的发展成为了热门的应用方向。例如,通过地面基站指挥无人机进行安全巡检、消防救援等活动。然而,有限的续航能力一直都是无人机普遍的缺点,无人机在许多具体应用场景(比如航拍、信息收集等)时,要定时返航为无人机充电。因此,部署无人机执行任务时,进行合理的路径规划,减少不必要的飞行能耗显得尤为重要。本论文以蜂窝网联无人机收集地面节点信息为场景,分别研究如何在最短的时间完成信息收集任务及如何最大程度上减少地面节点地能耗。本文的具体研究内容可归纳如下:一、研究了连接受限的网联无人机飞行轨迹优化问题。考虑一个网联无人机数据采集系统,无人机必须要保持与蜂窝网的连接,通过对轨迹的优化尽可能地缩短无人机完成信息收集任务的时间。本文首先对地面节点用螺旋算法按照相对距离进行聚类,找出聚类的中心点(驻点、簇头、无人机停留点)。然后用基于几何理论的点对点距离算法获得各驻点之间的距离,并通过蚁群算法,获得无人机对所有驻点的访问顺序,并最终获得任务完成时间最小时所对应的无人机轨迹。进一步考虑到无人机可短暂的断开与地面基站的连接,本文研究了中断时间受限情况下的轨迹优化问题,与传统的全程连接方案相比,可进一步缩短完成时间且服务更多的地面终端。最后,给出的仿真结果证明了本文提出的算法的有效性。二、研究了数据传送中地面节点能量优化的问题你。考虑利用网联无人机进行数据采集,地面节点在完成数据传输任务的前提下,为了延长其的生存时间,需要尽可能减少地面用于信息传输的能量。为此,本文的研究了在无人机任务完成时间一定的情况下,通过规划无人机的轨迹,使得地面节点剩余能量最大化。首先利用改进后的螺旋算法找出节点能耗最小化的驻点,然后利用点对点距离算法和蚁群算法获得无人机的轨迹。进一步考虑到单个无人机的任务时间有限,本文提出了利用二分法进行两个无人机轨迹的联合优化,进一步减少任务完成时间,提高节点的剩余能量。
其他文献
随着大数据时代的来临,数据的获取效率不断提升,如何从海量数据中识别出与其他样本不同的离群点是生产活动中需要考虑的重要问题。现在已经有许多不同的异常检测方案被提出,用于解决离群点识别这一问题,但是这些方法都有不同的缺陷。例如需要足够的异常样本进行训练或者过于依赖参数选择等。而孤立森林算法相比于其他异常检测算法具有时间复杂度低、只需要小数据集进行训练、参数选择少等优势,但同时也存在训练过程中随机选取属
医学图像是重要的临床参考信息,被广泛应用于实际临床诊断中。高分辨率的医学图像可以辅助医生做出更好的治疗决策,但直接获取真实的高分辨率医学图像较为困难,往往需要更换精度更高的成像设备。超分辨率重建技术可以通过低分辨率医学图像生成高分辨率医学图像,成本更为低廉。医学图像对重建准确度要求较高,利用残差网络实现医学图像超分辨率重建,能更好的还原医学图像的纹理特征。本文基于残差网络结构,研究医学图像超分辨率
Ti-6Al-4V是最常见的航空金属之一,广泛应用于航空航天、生物医学、海洋装备及汽车制造等工业领域。它是一种比较昂贵的合金,在传统的减法制造中,为了达到最终的零件几何形状,需将80%以上的原材料加工消耗,造成了极大的浪费。增材制造(Additive Manufacturing)通过三维模型直接逐层制造实体,这一工艺可以快速、精确地制造出形状复杂的零件,同时也可以解决传统制造方式中原材料的浪费问题
随着深度学习的快速发展,人脸识别技术已在现实生活获得广泛应用。尽管在多数情况下识别率已经非常优秀,其依然存在一些问题。主要体现在:(1)现有的人脸识别方法对多角度人脸识别依然存在不足;(2)现存的基于中心云人脸识别系统远离终端设备,大量图像数据给云服务器带来高计算负载和低实时性。(1)针对人脸角度变化带来的人脸识别准确率下降的问题,本文提出基于生成对抗网络的方法DSU-GAN,并结合人脸特征学习和
近年来,无人机依靠卫星导航系统在室外环境下得到广泛应用。与此相比,由于室内环境缺乏可靠的导航系统,无人机室内应用备受限制。为了让无人机有更多的应用场景,如何依靠无人机自身搭载的传感器完成未知室内环境下的自主导航,是打破无人机应用场景限制亟待解决的挑战与难点。为此本文以四旋翼无人机为平台,依靠搭载的二维激光雷达探测环境,使用基于ROS的软件框架,实现二维激光SLAM和二维避障,解决室内导航系统中的定
信息的私密性是确保网络安全的基础,由于无线传输的广播特性使得无线信号极易被窃听,因此安全是无线通信系统中一直被研究的课题。传统的保密方法是通过密码算法确保只有合法用户才能正确解密,而第三方窃听者无法还原信息,从而保证信息的安全。无线信道因其自身的信道特性使得用户的信道对于窃听者是不可测量和不可复制的,这反映出无线信道具有内在的安全属性。物理层安全技术巧妙利用这一特性,从信号层面入手策划安全机制,为
人类活动的分类和识别在安全、预防犯罪、医疗监控等领域发挥着重要作用。人体运动过程中肢体的摆动包含了丰富的微多普勒信息。不同的人类活动对应着不同的微多普勒分布。这些差异可以用于对不同的人类活动进行分类。因此,基于图像域的深度学习方法在雷达目标分类识别中得到了广泛的应用。在大多数情况下,通过实际测量获取雷达图像的成本很高,因此在构建大型的雷达图像数据库方面存在一定的困难。而训练有监督的深度学习算法的关
随着智能时代的到来,脑机接口在很多领域都有着很大的进展,其最核心的技术是对脑电信号进行分类。深度学习技术为脑电信号类别的识别研究提供了一种新的方法。因此,开展基于深度学习来提升运动想象脑电信号分类的精度研究是具有重要意义的。本课题主要研究内容和取得的阶段性成果如下:首先为了提高运动想象脑电信号的信噪比,对本文数据集使用ICA独立成分分析剔除伪迹和FIR带通滤波器进行处理;接着基于运动想象脑电信号具
随着中国经济水平的发展和建造技术的不断提升,BIM技术在超高层建筑的应用基本得到了普及,但不同类型项目应用BIM技术的深度不一样,所呈现出的效果也不一样。超高层建筑结构复杂,项目参与人员、施工机械及现场施工环境等因素互相影响,明显增大了项目的施工管理难度。而BIM技术的引入,将超高层建筑项目管理的不同方面进行了系统性的变革,在传统的项目管理基础上,提升了施工技术、节约了成本、提高了管理效率,从而弥
图像加密技术是保障数字图像传输与存储安全最直接、最有效的方式之一。本文综合应用组合数学、深度学习等理论与技术,研究提出了三种新的数字图像加解密算法,开发了一个图形化数字图像加密解密工具DIEDT。主要研究工作和成果如下:1.提出基于四方定理与幻方的图像加密算法FMSS。为缓解幻方置乱方法变尺度置乱能力不足的局限,引入基于四方定理的分块规则,通过分块、置乱、转置、变化形状、拼接等操作,提升加密效果。