【摘 要】
:
通过对奇异摄动最优控制问题状态解极限性质的深入研究,本文探讨了奇异摄动最优控制问题中空间对照结构的存在性.近年来,对空间对照结构的研究已取得了非常深入的成果,从而为奇异摄动最优控制问题中空间对照结构的研究提供了理论依据.空间对照结构主要分为阶梯状空间对照结构和脉冲状空间对照结构两大类.本文主要讨论阶梯状空间对照结构,它的基本特点是在所讨论区间内存在一点t*(当然也可以存在多点t*),t*称为转移点
论文部分内容阅读
通过对奇异摄动最优控制问题状态解极限性质的深入研究,本文探讨了奇异摄动最优控制问题中空间对照结构的存在性.近年来,对空间对照结构的研究已取得了非常深入的成果,从而为奇异摄动最优控制问题中空间对照结构的研究提供了理论依据.空间对照结构主要分为阶梯状空间对照结构和脉冲状空间对照结构两大类.本文主要讨论阶梯状空间对照结构,它的基本特点是在所讨论区间内存在一点t*(当然也可以存在多点t*),t*称为转移点,因为在每个转移点的讨论完全一样,所以我们只讨论存在一个转移点的情况.事先t*的位置是未知的,需要在渐近解的构造过程中确定.在t*的某个小邻域内,问题的解会发生剧烈的结构变化,当小参数趋于零时,解会趋向于不同的退化解.本文由两部分组成,第一部分研究奇异摄动最优控制问题中的阶梯状空间对照结构,第二部分研究奇异摄动混合动态系统的最优控制.第一章回顾了奇异摄动最优控制的发展过程,引入了与本文研究内容相关的一些基本定义和引理,介绍了本文的工作和创新之处.第二章研究了数量情形的线性奇异摄动最优控制问题和含有积分边界条件的奇异摄动最优控制问题.利用指数二分法的一些性质和Fredholm交换引理以及k+σ交换引理,证明了阶梯状空间对照结构解的存在性.同时,根据解的结构,运用边界层函数法和直接展开法构造了其一致有效的形式渐近解.第三章研究了数量情形非线性奇异摄动最优控制问题的阶梯状空间对照结构,利用必要最优性条件的等价性证明了阶梯状空间对照结构解的存在性.同时,利用直接展开法构造了该问题一致有效的形式渐近解.第四章研究了高维奇异摄动最优控制问题的阶梯状空间对照结构,利用k+σ交换引理证明了阶梯状空间对照结构解的存在性,结合直接展开法构造了该问题一致有效的形式渐近解.第五章研究了奇异摄动混合动态系统最优控制的渐近解.借助变分学的方法得到了混合动态系统的最优性条件,并利用边界层函数法构造了形式渐近解.运用缝接法对轨道进行了缝接,在整个区间上得到了解的存在性和渐近解的一致有效性.
其他文献
(A,G,α)是一个C*-动力系统,其中A是可分的顺从C*-代数,G是第二可数的紧群.B是另一个C*-代数,记Bs=B(?)K,K是某个无穷维可分Hilbert空间上的紧算子全体.Bs是B的稳定化Cs-代数.在本文中,我们将讨论群ExtG(A,B),它是由全体(A,G,α)→Q(Bs)的共变扩张的等价类构成.当A有单位元时,我们将讨论群ExtG,u(A,B),它是由全体(A,G,α)→Q(Bs)的
本文的主要讨论以下内容:1. Hilbert空间上有界线性算子的稳定扰动.主要研究了Hilbert空间上有界线性算子稳定扰动的等价条件,并利用T和T=T+δT的值域与零空间的关系刻画了I+T+δT的可逆性.利用稳定扰动,我们给出了2×2算子矩阵的Moore-Penrose逆的表示.2.AT,S(2)逆的扰动分析.借助于子空间间距,分别在Hilbert空间和Banach空间上讨论了AT,S(2)的扰
本文旨在研究平面跨临界型转点处的分支现象和带有截断项的扩展FKPP方程行波解的异宿轨道分支.近年来,利用几何奇摄动结合动力系统理论研究奇摄动系统的分支现象已得到了较大的发展.如奇摄动系统中的鸭现象,奇摄动系统中的同、异宿轨分支等.但由于奇摄动系统的特殊性,其分支理论与方法还有待进一步的发展和完善.本文运用几何奇摄动理论和动力系统中的方法研究平面奇摄动系统中的几类分支现象,并推广了前人的一些结果.全
细鳞苔属Lejeunea是细鳞苔科的模式属,自1820年建属以来已有近200年的历史。根据1999年的文献统计,细鳞苔属下曾报道的种名己达到1749个。虽然其中大部分种名已被移入其他属或归并为异名,但是属下目前正式接受的种名仍有约400个。近15年间,已先后有16个属被并入细鳞苔属,使得属内植物体形态变化的幅度变大,与近缘属间的关系变得模糊。由于个体细小、种类繁多以及属内形态变化大,加上缺乏全面的
经过近二十年的发展,冷分子作为一门新兴的学科受到了越来越多科学工作者的关注,这基于其在高分辨光谱和基本物理常数的精密测量,冷化学和冷碰撞,以及量子计算等诸多领域中的潜在应用。而如何高效制备冷分子束源是许多实验的基础。到目前为止,像静电Stark减速,Zeeman减速,缓冲气体冷却,以及最新的分子激光冷却等等技术在实验上已越来越成熟,而本文主要致力于利用静电Stark减速技术来制备冷分子,以及将制备
论文主要内容可分为两大部分:第一部分主要研究Banach代数中广义逆的若干问题,重点文研究(p,q)型-广义逆,内容包括第二章和第三章;第二部分主要研究Banach空间中非线性算子广义逆的若干问题,重点研究有界齐性广义逆和Moore-Penrose度量广义逆的理论及应用,这部分内容包含第四章和第五章.具体内容可概括如下:设A为一个具有单位元的Banach代数.设元素a∈A而p, q∈A为幂等元.在
设X是光滑射影一般型曲面.记c12和χ分别为X的第一陈示性数和全纯欧拉特征数.一般型曲面的地理学问题是指确定一般型曲面的所有可能(c12,χ)的值.这一问题在代数几何中有很长的研究历史.著名的Bogomolov-Miyaoka-Yau不等式是说:在[Per]中,Ulf Persson证明c12≤8χ对光滑完全交曲面成立.在这篇论文中,我们将Persson的结果进一步精细化,确定所有光滑完全交曲面的
受Martin关于复Brauer代数的分解数的工作和Cox-De Viss-cher关于复walled Brauer代数的分解数的工作的启发,在一定条件下,我们给出一个算法具体计算分圆Nazarov-Wenzl代数和分圆Birman-Murakami-Wenzl代数的分解数.我们的结果证明了重数自由性对这两类代数成立.
冷分子在科学领域有很多非常重要的应用,例如:高分辨光谱的研究、冷化学与冷碰撞的研究、量子计算与信息处理、基本物理常数的测量等。本文首先介绍了冷分子的制备方法、囚禁及其应用;然后提出了极性分子静电囚禁的两种新方案;接着介绍了一种可用于静电Stark减速与操控的重要分子(CH自由基分子),以及本实验采用的两种制备方法:直流脉冲放电和五倍频YAG激光器光解;最后对本文的研究工作进行了总结和展望。本文提出
仿射Coxeter群(Bn,S)可以被看做仿射Coxeter群(Dm,S),m∈{2n,2n+1}在群自同构αm,n,αm,n(S)=S下的不动点集合.设l是Dm的长度函数.我们清晰地刻画了加权Coxeter群(Bn,l)的满足a(L)≤6的左胞腔,并证明了这些左胞腔都是左连通的.同样的,仿射Coxeter群(B3,S)可以被看做仿射Coxeter群(D4,S)在群自同构α,α(S)=S下的不动点