论文部分内容阅读
Web信息,根据蕴涵信息的“深度”可以划分为Surface Web和Deep Web两大类。其中:Surface Web是指通过超链接可以被传统搜索引擎索引到的页面的集合。Deep Web是指通过填写表单(Form)形成对网站后台数据库的查询而得到的动态页面。如何有效地组、管理Deep Web信息,快速、准确地访问用户所需要的信息是当前信息科学和技术领域面临的一大挑战。随着动态网页技术的发展和日益成熟,Deep Web所蕴含信息量的快速增长,通过对Web数据库的访问逐渐成为获取信息的主要手段,而对Deep Web的研究也越来越受到人们的关注。作为组织和处理大规模Deep Web信息的关键技术,Deep Web数据集成可一定程度上解决用户访问互联网中这些“深度”数据库的需求;同时,Deep Web数据集成的相关技术在信息检索、数据挖掘、数据抽取、个性化服务、数字图书馆等领域有广阔的应用前景。本文研究内容和创新工作主要包括以下几点:(1)Deep Web集成模式的研究现实中Deep Web的类型多种多样,用户需求也各不相同,需要考虑不同情况的Deep Web数据集成。论文研究了Deep Web间的关系,以及这些关系对Deep Web数据集成系统查询处理的约束,并在此基础提出Deep Web数据集成的集成模式,以及不同集成模式下查询处理的过程。为不同类型Deep Web数据集成的进一步研究和应用提供参考。(2)基于机器学习的Web数据库分类大量的deep Web源的存在,对他们的分类是通向deep Web分类集成和查询的关键步骤。论文提出了一种Deep Web表示模型和基于机器学习的分类模型,并在此基础上提出一种新的权重计算方法。实验结果表明:这种分类方法经过少量样本训练后,就能达到很好的分类效果;且随着训练的样本的增加,该分类器的性能保持稳定。(3)基于本体的Deep Web查询接口分类本体是一种知识表示模型,用来在某个特定领域中定义基本术语、关系和一些规则,并将之表示成机器可读的形式。针对deep Web查询接口,论文提出一种分类本体模型和建立本体的推理规则,并提出了deep Web空间向量模型(VSM)。试验表明,这种分类方法具有良好的分类效果。(4)基于知识的deep Web集成环境变化处理的研究研究了Deep Web集成环境中构件的依赖关系,在此基础上,论文提出了一种基于知识的环境变化的处理方法,包括Deep Web集成环境变化处理模型以及适应Deep Web环境变化的动态体系结构和处理算法,可以对大规模Deep Web集成的进一步探索和走向应用提供参考。实验结果表明,该方法不仅可以处理Deep Web集成环境的变化,还可以大幅度提高集成系统的性能。(5)基于Deep Web的个性化服务的研究个性化推荐可以实现“信息找人”,可一定程度上解决由于海量信息而导致的“信息过载”和“信息迷向”问题。论文提出了一种基于Deep Web的个性化服务的框架,包括:基于资源元数据描述为语义基础的用户兴趣模型、Deep Web爬虫和个性化推荐,并在个性化推荐的算法中提出了一种新的基于语义的相似度度量方法。最后,基于上述思想的基础上,开发了一个科技文献推荐系统,使用户在尽可能少的参与下,就完成科技文献的个性化服务。