论文部分内容阅读
Dehn手术和Heegaard分解是构造三维流形的两种基本方法.这两种方法又都可以通过把柄添加的方式来实现.关于把柄添加方面的一个重要问题是:在双曲流形的亏格至少为2的边界分之上有多少2-把柄添加使所得到的流形是非双曲流形? 设M是一个双曲流形,α和β是M的边界分支F上的两条本质的分离简单闭曲线,其中F的亏格至少为2,则已知的结果是:如果M(α)和M(β)是非双曲流形,那么△(α,β)≤14.进一步,M.Scharlemann和吴英青(1993)提出了一个猜想:如果M(α)和M(β)是可约的或边界可约的,那么△(α,β)=0.本文证明了如果M(α)和M(β)都是可约流形,那么△(α,β)≤2.特别地,如果M(α)和M(β)都是可约流形,并且F的亏格为2,那么△(α,β)=0.这一结论与参考文献[35]中的结论,以及参考文献[56]中的结论合起来,就得到:在一个双曲三维流形M的一个亏格为2的边界分支F上,最多只有1条分离的简单闭曲线,使得沿其做2-把柄添加能够产生可约流形或边界可约流形.这一结果表明当F的亏格为2时,上面提到的猜想是对的.同时,这一结论还给出了M. Seharlemann关于Refilling问题所提猜想的一个部分证明.
设M<,i>=V<,i>∪W<,i>(i=1,2)是两个不可稳定化的Heegaard分解,且F<,i> _W<,i>是 _W<,i>的两个紧致子曲面.同胚映射 f∶F<,1>→F<,2>给出了粘贴流形M = M<,1> ∪F<,1>=F<,2> M<,2>.本文给出了M的Heegaard分解的一种构造方法一曲面连通和,并举了一个例子来说明这种方法构造的Heegaard分解和一般意义下的融合积得到的Heegaard分解是不同的.同时,本文还给出了由曲面连通和得到的Heegaard分解是可稳定化的一个充分条件.
M.Scharlemann和A.Thompson(见[53])给出的thin position的概念在Heegaard分解的研究中起着重要的作用.Heegaard分解的thin position与流形中的双侧可压缩曲面有着密切的关系.本文利用Knesei-Haken定理证明了三维流形中完全不交的双侧可压曲面构成的非过剩集合含有的元素的个数是有上界的;进一步,本文证明了三维流形Heegaard分解的thin position长度的有限性定理.