基于二维混沌映射的图像加密算法研究

来源 :桂林电子科技大学 | 被引量 : 0次 | 上传用户:mchz
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
由于社会数字化进程的推进,促进了工业互联网技术和5G技术的蓬勃发展,导致数字信息的传输量和共享量急剧增长,数字图像在传输过程中受到一些组织或个人的攻击,可能会造成灾难性的后果。因此,保护图像信息安全传输是一项重要的工作。混沌映射被广泛应用于图像加密,它具有的初值极端敏感性和伪随机性等特性与加密思想要求一致。然而,现有的混沌加密算法也存在混沌特性不足、易于攻破等问题,为了有效提升图像加密性能,本文从增大密钥空间、增强加密效果、增加随机性和安全性方面考虑,分别设计了两种基于二维混沌映射的图像加密方法。设计了一种基于二维正弦帐篷耦合映射(two-dimensional Sine-Tent-Coupling map,2D-STCM)的图像加密算法,该算法在兼顾密钥空间和混沌系统结构的基础上,解决了加密系统随机性不足的问题。2D-STCM由正弦映射和帐篷映射组成。首先,密钥生成步骤用来生成初值条件,混沌序列是来自两个混沌系统的参数:初始值条件和安全密钥。然后,对正弦映射和帐篷映射进行耦合,改善动态退化、输出分布和混沌轨迹的长度等问题。最后,进行位级置换操作和扩散操作。安全测试结果表明所提出的混沌系统在信息熵和相似性等方面的测试结果较接近理想值,可以抵抗各种常见攻击,因此,2D-STCM具有更好的混沌性能。设计了一种基于二维逻辑正弦无限折叠迭代映射(two-dimensional Logical-SineIterative chaotic map with infinite collapses,2D-LSIMM)的图像加密算法,该算法主要为了克服一维混沌系统密钥空间小和加密结构简单的问题。2D-LSIMM由逻辑映射、正弦映射与无限折叠迭代映射(iterative chaotic map with infinite collapses,ICMIC)组成。首先,把逻辑映射的输出与正弦映射耦合在一起;然后,由ICMIC映射调制耦合结果,并从一维到二维扩展相平面,混沌环变换(Chaotic ring transform,CRT)操作用来随机扰乱像素位置,并且连接不同行列实现置换操作;最后,进行扩散操作改变所有像素值。实验结果显示2D-LSIMM密文信息熵十分趋近理想值8,且高于二维混沌映射的对比算法,可以有效抵抗统计分析攻击。密文的差分攻击两个测试指标极大地向期望值趋近,2D-LSIMM在对抗差分攻击测试中表现良好。
其他文献
随着互联网技术的发展,越来越多的人乐意在网络平台中发表评论。随着时间的推移,网络平台产生并保存了大量的评论性文本信息。这些评论信息往往蕴藏着用户对某事件或某产品的倾向性观点及情感,对其进行情感分析,有助于网络舆情监控;也有助于商家改进产品质量,提高服务水平。在文本情感分析方法中,粗粒度的句子级情感分析只能得到文本的整体情感,无法得到所评论对象不同方面或属性的情感信息。而细粒度的方面级情感分析可获取
随着移动电信技术和智能终端的飞速发展,大量计算密集型、时延敏感型的新型应用不断涌现,如智能交通、虚拟现实、车联网、物联网等,为满足移动终端的低时延响应需求,一种整合网络边缘中异构资源的分布式计算范式被提出,即多接入边缘计算(Multi-access Edge Computing,MEC),又称移动边缘计算。但由于MEC的计算资源有限,且用户终端的任务类型复杂多样,不同任务类型的处理难度差距较大。因
阿尔茨海默症(Alzheimer’s Disease,AD)是一种神经退行性脑部疾病,临床上表现为记忆障碍、行动以及语言能力丧失等。AD根据临床症状表现可分为轻度认知障碍(Mild Cognitive Impairment,MCI)、正常情况(Normal Control,NC)和AD。MCI是AD和NC的一种中间状态,是AD的前驱阶段,且MCI的临床症状不明显,在病情的初期不易被察觉,一般情况下
图像描述是一项融合计算机视觉与自然语言处理的技术,能够实现从图像信息到文字信息的转换。图像描述在人机交互、视觉辅助和智能机器人等诸多场景中具有重要的应用价值。目前大多数是针对英文语句的图像描述研究,中文语句与英文语句在语法、分词、表达等方面有所不同,中文描述语句的准确度和细致度等仍有待提高。本文采用深度学习方法对图像中文描述模型进行研究,主要工作如下:第一,提出了基于多尺度密集连接网络的图像中文描
图节点分类在社交网络、电子商务和疾病预测等领域有着广泛的应用。图结构的复杂性给现有分类算法的应用带来了挑战,因此探索高效的分类算法具有重要的现实意义。本文主要基于图卷积神经网络和超图神经网络对节点的半监督分类方法进行研究。在图卷积神经网络的节点分类方法中,初始的图结构往往存在噪声,直接将其送入网络模型中训练,模型的分类准确率会受到影响。因此本文首先在已有的图神经网络架构上改进,设计一种融合图结构和
智能合约作为以太坊区块链的可编程模块继承了区块链的技术特征——数据的存储和计算方式拥有不可更改的特性。它适用于存在互不信任的应用场景。现有的区块链应用研究一般分为两点:(1)针对区块链去中心化和防篡改的特性将其应用在新的应用场景中。(2)针对区块链技术的限制,扩展区块链的功能。本文主要基于以太坊智能合约技术,做出了以下两点研究。(1)针对在互联网环境下社区代币有中心化、不公开、平台掌控者可以任意修
差分故障攻击作为一种经典的侧信道攻击,其攻击原理主要是依赖于在加密设备执行期间恶意注入故障,然后通过分析故障输出和非故障输出之间的差异来推出相关的密钥信息。具有故障注入灵活、分析效率高、攻击复杂度低等优点,对加密算法的工程应用构成了严重威胁。因此,差分故障攻击以及如何抵御差分故障攻击是目前学术界的研究热点之一。本文主要基于故障注入、感染计算以及故障检测等基础思想,对轻量级密码算法ANU和Pyjam
全球卫星导航系统的导航与位置服务给人们带来了前所未有的良好体验,但是由于导航信号传达地面需要经历漫长的过程,其次导航信号的公开性以及其缺乏防护措施让导航信号变的十分脆弱,极易被恶意用户欺骗干扰,而这类干扰不同于容易被检测出来的压制式干扰,不仅隐蔽性极高,而且危害性极大,难以被一般的仪器和算法检测出来。针对上述问题提出了一种基于BP神经网络的有监督的机器学习对欺骗导航信号和真实导航信号进行二分类的欺
单光子探测技术在需要高灵敏度的弱光传感应用,例如3D激光雷达成像技术,量子密钥分发,光感测距技术和医用成像技术等领域拥有广泛的应用前景。在这些应用中最基础核心的器件则是单光子雪崩探测器(Single Photon Avalanche Detector,SPAD),由于在进行单光子探测时可获得的光信号非常微弱,所以要实现检测微弱的光子信号就必须有相应的信号放大处理并同时保持极低的噪声。单光子雪崩二极
地面作业相比以前已经有很多的岗位被机器人替代,未来的空中作业也可能如同地面作业一样逐渐的被空中机器人替代。带有机械臂的四旋翼无人机在未来的空中作业会扮演一个非常重要的角色,可以进行空中抓取、空中维修等作业。由于四旋翼无人机是无固定支撑点的机器人,机械臂的空中作业会对四旋翼无人机带来很大的干扰,影响四旋翼无人机的飞行稳定性、可靠性,进而影响到了机械臂的空中作业。所以,提高四旋翼无人机的抗干扰能力就有