【摘 要】
:
区块链作为一种新兴技术,因其具备可溯源、防篡改、去中心化的特性,在金融、医疗、征信等领域得到了广泛专注。相对于其他区块链系统而言,超级账本的模块化设计支持可插拔的共识模块,用户可以根据需要选择共识算法。Raft共识作为一种高效分布式共识算法,可以与超级账本完美契合,极大地提升Hyperledger Fabric区块链的交易效率,尤其适用于数据上链效率要求较高的应用场景。然而,Raft共识仅支持崩溃
论文部分内容阅读
区块链作为一种新兴技术,因其具备可溯源、防篡改、去中心化的特性,在金融、医疗、征信等领域得到了广泛专注。相对于其他区块链系统而言,超级账本的模块化设计支持可插拔的共识模块,用户可以根据需要选择共识算法。Raft共识作为一种高效分布式共识算法,可以与超级账本完美契合,极大地提升Hyperledger Fabric区块链的交易效率,尤其适用于数据上链效率要求较高的应用场景。然而,Raft共识仅支持崩溃容错,在安全性上稍显不足。此外,在大数据时代,数据作为有价值的企业资产,往往存在易丢失、易篡改、易伪造等安全问题,因此,数据访问的可审计、可溯源成为保证数据库安全的重要手段。因此,论文研究了Raft共识优化机制,并基于Hyperledger Fabric区块链,构建了安全高效的数据库访问日志上链方案,具体完成了以下工作:首先,为提升Raft中Leader节点选举的公平性及安全性,利用Raft共识机制中其自身日志应用的迟滞差值变化和迟滞差值的方差齐性检验,构建基于迟滞差值的信誉值模型,并提出一种基于信誉值的安全Raft共识机制,通过记录Raft排序节点每个任期迟滞差值的变化来反映排序节点Log日志写入的效率以及节点的工作状态,利用节点的信誉值来限制恶意节点当选为Leader的概率,从而提高Raft共识机制的安全性。其次,基于安全Raft共识机制设计了数据库访问日志上链的应用方案,提出一种基于R-P的数据库访问日志上链方法。该方法构建基于信誉值的议会制模型,在每次Leader选举完成后将信誉值大于等于历届Leader平均信誉值的节点纳入议会成员列表中,由Leader节点担任当前任期议会议长。并进一步提出了基于R-P的交易负载均衡策略,该策略在Raft节点较多时,降低了Raft日志复制过程中Leader节点的负载,提升了Raft达成共识机制的效率,从而进一步提升数据库访问日志上链的效率。最后,为验证论文提出的公式机制的安全性及数据库日志上链方法的有效性,搭建了实际的Hyperledger Fabric私有链,对论文提出的数据库日志上链方法性能、恶意节点的影响、信誉值模型、激励机制等进行了验证分析。论文工作表明,基于信誉值的安全Raft共识机制能够在保证Raft排序模块Leader选举效率的前提下,提升排序模块Leader选举的安全性以及公平性;基于R-P的数据库访问日志上链方法能够在保证排序模块Leader选举安全性以及公平性的前提下,进一步提升数据库访问日志上链的效率。
其他文献
脑机接口(Brain Computer Interface,BCI)作为交叉学科中的前沿技术,可以让脑在没有肌肉组织辅助的情况下与外界通信,为脑与外界提供一种全新的通信方式。运动想象(Motor Imagery,MI)是一种常见的BCI范式,BCI系统将脑在进行运动想象时产生的信号作为输入,便可把此信号处理为相应的机器指令并由外界设备表达出来。在BCI系统对信号的处理过程中,特征提取和分类是将脑信
近年来,随着网络和智能设备的出现和普及,越来越多的数据涌现出来。随着数据对人们生活的影响越来越强,数据被认为是“新时代石油”。如何从数据中挖掘出有效的知识,是一个亟待研究的问题。犹豫模糊集理论作为一种新的模糊集扩展模型,是处理决策问题中不确定信息的有效工具。传统的犹豫模糊多属性决策方法(Multi-attribute Decision Making,MADM)只能选择最优策略,不能适用于复杂决策。
智能电网作为下一代电力网络,融合了现代通信技术、传感技术以及自动化等技术,有效提升了电力网络的高效性、可靠性和稳定性。智能电表作为智能电网架构的重要基础设施,被广泛部署在用电区域以记录用户的用电数据,保证智能电网安全、可靠和高效地运行。但是这些数据不仅属于用户的隐私数据,而且用于智能电网监测、电力调度以及负载均衡等等,一旦被泄露或者篡改将会带来巨大损失,这成为了限制智能电网进一步发展的重要因素。因
随着图形图像技术的发展,特别是医疗成像设备的普及,医学图像处理技术得到了越来越广泛的应用。临床上,医生通过对脑出血病人的脑部CT扫描图像进行肉眼观看,并结合自身的行医经验,来判断病患的脑部出血量、血块的形态以及出血区域等相关指标,进而为手术做好相应的准备。然而,CT图像均为二维断层切片,并不能反映脑出血部位在空间上的结构。因此,本文以脑出血CT图像数据集作为基础,利用深度学习的方法对图像中出血部位
伴随着互联网的崛起,图像和视频在信息传播中起着不可忽视的作用。随之而来的就是各种图像和视频篡改软件,数字图像取证的一个重要方向就是对篡改图像的检测,以前大多数的方法集中在检测篡改图像分类上,很少有方法定位图像的篡改区域,目前大多数的图像篡改区域定位检测存在精确率不高的问题。此外,近几年由于深度学习的火热,出现了AI换脸技术,这些换脸技术能达到以假乱真,肉眼无法分辨的效果,也因此带来不小的社会安全问
空间数据中继网络(Space Data Relay Network,SDRN)凭借其覆盖范围广,可持续传输能力强等特点,为众多低、中轨用户卫星以及深空探测器提供数据跟踪、测控和中继服务。空间数据中继网络中的任务调度是指根据用户卫星的任务请求和数据中继卫星的有效载荷,科学合理地分配中继资源,以完成任务数据的传输。近年来,随着大量的卫星发射成功,不断增长的空间任务与有限的中继资源之间的矛盾愈加凸显,给
当前室外定位技术对人们的应用价值越来越突出,例如室外导航、无人驾驶等都需要位置信息。然而,在室内环境中,由于建筑物对卫星信号的遮挡,在室外应用较多的卫星定位系统的性能大大降低。此外,在非视距(Non-Line-of-Sight,NLOS)的传播环境中,应用较多的直达波定位算法的精度大打折扣。鉴于此,研究室内NLOS环境下的定位技术显得非常必要。为实现这个目标,本文将NLOS传播路径信息作为有利条件
随着城市人口和车辆数量的逐年增加,交通治理和规划越来越引起重视,合理的交通规划、公共交通布局可以减少城市拥堵,降低交通安全隐患。为了优化城市交通管理效率和提升市民出行体验,基于网格的城市交通流量预测方法被广泛应用于智能交通系统(Intelligent Transportation System,ITS)中。然而,现有的预测工作面临着许多问题,由于交通流量变化的随机性、在时间和空间关联上的高度非线性
2020年10月,党中央国务院印发《深化新时代教育评价改革总体方案》,体现了提高教学质量在教育强国战略中的重要地位。学生是教育的接收者,对教学质量有着清晰的感受。挖掘学生教学评价中的情感倾向可以反映真实的教学情况,帮助改善教学。为此,针对当前学生教学评价领域存在的主要问题,本文利用深度学习方法对学生教学评价文本进行情感分析研究,提出了两种深度学习模型分别用于学生教学评价的方面级别情感分析和跨领域情
图像的构成一般是复杂多样的,包含着各种各样的结构特征,如平坦区域、斜坡区域、角状结构、流状结构、褶皱和纹理等,其中有很多结构特征与噪声一样属于图像中的高频信息,权衡噪声的去除与结构特征的保持是图像复原研究的重点。本文以具有复杂结构的图像作为研究对象,利用分数阶微积分、结构张量、微分几何方法等理论,首先研究了如何去表征图像不同的结构特征,然后在此基础上研究了新的基于变分与偏微分方程的图像复原框架,具