【摘 要】
:
随着科技的发展和人民生活水平的不断提升,交通运输业获得了蓬勃发展,为铰接式车辆的发展提供了广阔空间。但是铰接式车辆容易发生事故,而且事故损失大,已经成为社会关注的重点问题。与此同时,随着科技水平的提高,针对乘用车的主动避障系统已经被逐渐开发出来。因此,研究基于铰接式车辆的主动避障控制策略具有社会和研究价值。本文主要研究某铰接式车辆在高速行驶中,发现前方存在障碍,在确保车辆稳定性的前提下,通过紧急变
论文部分内容阅读
随着科技的发展和人民生活水平的不断提升,交通运输业获得了蓬勃发展,为铰接式车辆的发展提供了广阔空间。但是铰接式车辆容易发生事故,而且事故损失大,已经成为社会关注的重点问题。与此同时,随着科技水平的提高,针对乘用车的主动避障系统已经被逐渐开发出来。因此,研究基于铰接式车辆的主动避障控制策略具有社会和研究价值。本文主要研究某铰接式车辆在高速行驶中,发现前方存在障碍,在确保车辆稳定性的前提下,通过紧急变道避免碰撞障碍的相关控制策略,并对该策略进行了验证,本文主要的研究工作包括以下几项:(1)建立带有主动转向的铰接式车辆三自由度模型和五自由度模型;利用遗传算法对铰接式车辆三自由度模型和五自由度模型中的各车轴侧偏刚度、车辆侧倾刚度进行了离线辨识,通过对比相同工况下车辆模型的计算结果以及由Truck Sim仿真得到的实际数据,验证了该算法的有效性。然后绘制了铰接式车辆在载荷变化和方向盘转角输入变化时的刚度值MAP图,指出了铰接式车辆侧翻转角极限。(2)规划分段式的避障轨迹。分析了避障工况的特点,确定了曲线的限制。基于回旋线和贝塞尔曲线的特点,建立了分段式的轨迹,并对轨迹参数进行了优化;在完成了轨迹规划之后,建立了对应的安全距离模型。该安全距离模型依托于半挂车后端离开危险区域,并把该系统和AEBS系统进行对比,得出结论:紧急变道避障理论上能够完成避障,且在前车速度不为零情况下发挥更好,其触发时间较AEBS晚,所需纵向距离更短,具有较好的效果。(3)建立铰接式车辆轨迹跟踪控制器。在铰接式车辆三自由度模型基础上推导了铰接式车辆的运动学模型和轨迹偏差,并基于模型预测控制搭建了轨迹跟踪控制器;同时利用铰接式车辆五自由度模型和车辆性能限制,给出了模型预测控制的约束条件,并基于Truck Sim与Simulink联合仿真平台进行了仿真实验,选择了空载、满载工况,对轨迹跟踪策略的有效性进行了验证。
其他文献
随着科技的进步,汽车行业提出了电动汽车、轻型汽车、智能网联汽车的发展趋势,而汽车车身上传统的电磁执行器质量大、体积大、噪声大等缺点日益凸显,与新时代汽车的发展理念相悖。形状记忆合金是一种新型材料,而以形状记忆合金材料作为执行元件的执行器具备结构小巧、无冲击噪声、无电磁干扰等优点,可以用来替代汽车上的传统电磁执行器从而改善上述缺点,具备着着良好的发展前景。形状记忆合金由于独特的材料成分,使其相比于普
二十一世纪的今天,汽车已经融入到了人们的日常生活中,成了不可或缺的交通工具。作为车辆和行驶路面接触的唯一部件,轮胎的性能决定着整车的性能表现,当轮胎充气压力不足时,会导致车辆行驶阻力增大,油耗升高,甚至导致爆胎,对驾乘人员的人身安全产生极大威胁。因此,实时监测轮胎压力状态,在胎压状态发生异常时警示驾驶员,对提高驾乘安全性和行驶经济性有重要意义。胎压监测系统(TPMS)正是为了解决上述问题而生的,它
燃料电池汽车相比于传统燃油汽车、纯电动汽车,具有无污染、零排放、燃料加注时间短、续驶里程长等优势,具有良好的应用前景。当前燃料电池系统的动态响应较慢,启动时间较长,在汽车起步、急加速、高速、爬坡等工况下对整车的性能有较大影响,从而影响驾驶员的驾驶感受,即影响驾驶性。因此研究驾驶性建模与仿真方法是燃料电池汽车集成匹配方法研究的重要内容。经调研,对燃料电池汽车整车性能的研究大多集中在动力性、经济性的建
随着智能交通体系的不断发展,现代社会对交通的功能和效率提出了越来越高的要求。然而,由于交通环境的复杂多变性,参与者的行为意图的不可控性等原因,合理的规划交通,实现车辆的全自动驾驶必然随之成为一个难点。现代交通对于经济发展,社会进步的重要性不言而喻,因此世界范围的广泛学者对自动驾驶问题展开了深入研究,他们的科学探索也获得了资金和社会各界人士的支持。为了解决这一难题,科研学者提出了多种控制策略,大体上
轨迹跟踪和轨迹规划是车辆智能化的重要研究领域,本文以四轮独立驱动电动车作为控制目标,通过直接控制车辆的前轮转角和四轮的驱动/制动力矩,结合多自由度车辆模型,复杂轮胎模型和人工势场模型以及模型预测控制,线性二次型调节器和二次规划理论,实现车辆基于高速场景下超车行为的局部轨迹规划和轨迹跟踪控制,具体内容包括以下几个部分。分别针对局部轨迹规划和轨迹跟踪控制,建立了线性单轨车辆动力学模型和非线性七自由度的
随着现代社会的发展,汽车保有量持续增加,汽车噪声对人们的生活及环境产生了极大的干扰,且汽车车内噪声对驾乘人员的舒适性存在很大的影响。聚氨酯多孔材料作为汽车降噪材料之一,可用于降低车内噪声,提高车内环境质量。石油资源的枯竭以及环保意识的加强,使寻找聚氨酯主要原料之一-石油多元醇的替代品具有重大意义。另外,生物基聚氨酯多孔材料声学性能与传统石油基聚氨酯相比,并没有太大的优势。因此通过改变聚氨酯外观结构
随着汽车电动化、智能化的发展,更人性化、考虑行人等弱势群体的更加全面的汽车安全性能逐渐被人们所关注。近年来,随着汽车安全性法规的出台,驾驶员和乘员在交通事故中的生存概率、受伤害程度得到普遍改善。相比之下,汽车的行人安全技术却发展较慢,人与车碰撞事故已成为全世界相关研究人员共同关注的问题。减少以及避免行人在碰撞事故中受到伤害,除了推出碰撞安全法规,还有开发主动和被动安全的新技术。目前行人保护的主流技
面对日益严格的油耗限制与排放法规,兼具传统汽车与新能源汽车优点的混合动力汽车成为当下的最优选择。作为混合动力汽车中能量混合度最高、传动系统最简洁的一种,增程式混合动力汽车(Range Extend Hybrid Electric Vehicles,简称REEV)成为当下研究的热点。然而现有混合动力汽车实际节能减排效果与设计的能量管理策略差异较大,如果能够进行汽车未来行驶工况的预测进而改善控制策略,
基于轮毂电机和转向电机的线控全轮转向电动汽车不但具备正常电动汽车在环保节能方面的优点,还可以更好的对车辆进行操纵稳定性、主动安全性等方面的控制。除此之外,基于多系统集成转向轮模块的线控全轮转向电动汽车还为多种不同转向功能的实现提供了可能,丰富了车辆的驾驶功能,具有广阔的发展潜力。本文基于可以实现多种转向功能的线控全轮转向电动汽车进行了研究,实现了对多系统集成转向轮模块以及基于多系统集成转向轮模块的
时至今日,道路上大部分车辆仍然依靠内燃机(ICE)将化石燃料中的化学能转化为机械能。化石燃料不仅是有限的资源,而且在燃烧时会产生一氧化碳(CO)、二氧化碳(CO2)以及氮氧化物(NOx)等对环境和人类具有不利影响的有害气体。为了应对能源和环境问题,世界各大汽车制造商投入研发了大量的混合动力汽车(HEV)、插电式混合动力汽车(PHEV)及纯电动汽车(BEV),以满足不同客户的需求。尽管这些汽车的销量