论文部分内容阅读
全国约三分之一的城市污水存在碳源不足的问题,某些污水处理厂采用化学除磷工艺也难以实现氮磷指标的达标排放。本论文以初沉污泥为底物,采用两级完全混合水解酸化工艺进行碳源开发。采用恒温水浴控制水解酸化池的温度为35℃,研究了HRT、SRT和污泥回流比对初沉污泥水解酸化的影响。研究结果表明,固定SRT为3天,污泥回流比为1的条件下,HRT为32~36小时,工艺具有较好的溶解性有机物累积效果,工艺出水的SCOD稳定在1090~1180mg/L范围内;固定HRT为32小时,污泥回流比为1的条件下,SRT为4~7天时,可以较好地实现水解酸化菌和产甲烷菌的分离,工艺具有较好的水解酸化效果,出水SCOD保持在980~1180 mg/L范围内;污泥回流比对初沉污泥的水解酸化也有较重要的影响,控制HRT为32小时,SRT为4天的条件下,污泥回流比为0.75~1的范围时,工艺具有较好的水解酸化效果。开发碳源的目的是为了提高城市污水生物脱氮除磷工艺的生物脱氮除磷效率与效果。采用序批式试验的方式研究了投加酸化液(富含VFAs的工艺出水)对反硝化菌反硝化速率以及聚磷菌厌氧释磷好氧吸磷速率的影响。研究结果表明,投加酸化液能够显著提高微生物的脱氮除磷效率。测定反硝化速率的序批式试验中,随着碳源浓度的降低,反硝化菌的反硝化速率不断减小,当酸化液的投加量为30mg/L(以TOC计)时,反硝化菌在第一阶段的平均反硝化速率为0.367mgNO3-N/mgVSS.d,对应的耗碳速率为0.713mgTOC/mgVSS.d;不同工况中活性污泥中聚磷菌的释磷潜力相近,污水中的碳源越多越能激发它的释磷潜能,因此,酸化液的投加量越大,聚磷菌的释磷速率也越快。当酸化液投加量为30mg/L(以TOC计)时,聚磷菌的平均释磷速率达到0.137mgP/mgVSS.d。碳源充足与否,对聚磷菌的平均好氧吸磷速率影响不大,而对聚磷菌吸磷持续的时间有重要影响。碳源充足的工况聚磷菌吸磷持续的时间长,而碳源不足时聚磷菌吸磷持续的时间短。采用序批式试验研究的各工况中,聚磷菌的平均吸磷速率在0.129~0.160mgP/mgVSS.d范围内,因此,碳源充足时,聚磷菌具有更强的吸磷能力。反硝化菌和聚磷菌能利用的有机物有一定的差别,以酸化液投加量为30mg/L(以TOC计)为例,可被反硝化菌利用的有机碳百分含量为75.7%,而可被聚磷菌利用有机碳的百分含量为57.4%。将酸化液投加到连续运行的A/A/O工艺中,投加点位于厌氧段起端,酸化液的投加量为36mg/L(以TOC计),工艺出水营养物指标分别为TN=14.18 mg/L、TP=0.4mg/L,达到《城镇污水处理厂污染物排放标准(GB18918-2002)》的一级A标准。