【摘 要】
:
特征标的诱导,限制和扩张为特征标的三大基本技术。如何在有限群的不可约特征标与其子群的不可约特征标之间按特征标的诱导关系建立一个一一对应,将对研究大群与子群的特征标理论之间的相互关系提供十分有用的技术。 设S为有限群G的一个次正规子群,η为S的任意一个不可约复特征标,则称(S,η,)为G的一个次正规特征标对。本论文重点考察了在何种条件下可以在(S,η)的稳定子群IG(S,η)和G之间按特征标的
论文部分内容阅读
特征标的诱导,限制和扩张为特征标的三大基本技术。如何在有限群的不可约特征标与其子群的不可约特征标之间按特征标的诱导关系建立一个一一对应,将对研究大群与子群的特征标理论之间的相互关系提供十分有用的技术。 设S为有限群G的一个次正规子群,η为S的任意一个不可约复特征标,则称(S,η,)为G的一个次正规特征标对。本论文重点考察了在何种条件下可以在(S,η)的稳定子群IG(S,η)和G之间按特征标的诱导关系建立一个双射。 我们以此为出发点提出了共轭封闭概念,即:设G为任意群,(S,η)为G的一个次正规特征标对。如果对G的任意一个次正规特征标对(H,θ)及任意的g ∈G,只要(S,η),(S,η)g≤(H,θ),就存在h ∈H,使得(S,η)h=(S,η)g.那么称(S,η)在G中共轭封闭。 在此概念基础上,我们证明了如果一个次正规特征标对(S,η)在大群G中共轭封闭,那么就可以在此特征标对的稳定子群和G之间按特征标的诱导关系建立一个双射: ()G:Irr(T|η)→Irr(G|η) ζ(?)ζG其中T为(S,η)在G中的稳定子群。 特别地,我们还推广了著名的Clifford对应定理和I.M.Isaacs于1984年提出的极大Fπ-对应定理。 下面具体阐述本文的主要结果。 定理2.2设G为任意群,(S,η)为G的任意一个次正规特征标对,T=IG(S,η)。如果(S,η)在G中共轭封闭,那么特征标的诱导定义了一个双射: ()G:Irr(T|η)→Irr(G|η) ζ(?)ζG 该定理包含几个有意义的推论。 推论2.3在定理2.2的条件下,如果S(?)G,那么定理2.2即为Clifford对应定理。
其他文献
集值分析是20世纪40年代以后蓬勃发展起来的一个现代数学分支。作为非线性分析的重要组成部分,在众多领域内有着广泛应用,其思想方法也已渗透到许多社会科学、自然科学以及技术领域的研究之中。由于不动点在理论和应用上的重要性,一直是数学研究的重点。关于集值映射不动点理论的研究,早在19世纪30年代Von Neumann就讨论过,之后,Kakutani, Brouwer, Bohnenblust, Karl
本文运用压缩的二维时域有限差分算法(Compact 2D FDTD)对方形渐变空气孔微结构光纤的色散特性进行了研究,并与方形不变和三角形渐变空气孔微结构光纤的色散特性进行了比较。所得结果对渐变微结构光纤的设计和应用有一定的参考意义。 本文的主要内容如下: 1、综述了微结构光纤的发展状况及主要研究方法。 2、介绍了时域有限差分算法的基本原理、数值稳定性条件、吸收边界条件以及它的有效
门限自回归模型在时间序列分析中已得到广泛应用。当建立或应用这种模型时,了解条件异方差的存在性是很重要的。本文分两节对门限自回归模型中自回归条件异方差的广义谱密度检验进行了讨论。在第一节中,我们介绍了广义谱密度检验。广义谱密度检验可以反映出时间序列的所有两两相依性,包括具有零自相关的那些序列。广义谱密度和它的导数还可以被用来检验序列相依的各个方面,例如鞅差,条件同方差性,条件对称性,和条件等峰度性等
设有限群S作用在有限群G上,记C=CG(S)为S在G中的不动点子群。特征标对应理论的一个核心问题是:何时存在一个典范双射 *:IrrS(G)→Irr(C),x(?)x*。 在互素条件下,即假定(|S|,|G|)=1时,Glauberman在1968年证明了当算子群S为可解群时存在上述典范双射,现在称其为Glauberman对应。剩下的是S不可解情形,此时由Feit-Thompson关于奇数阶
本文首先简单介绍了广义自回归模型,接下来给出了相关的主要结论。重点是第三章和第四章,分别是主要结论的证明和应用。本文给出的主要结论是将广义自回归模型的设计矩阵 Pn=sum from k=1 to n (XkX′k), X′k=(X(k),…,X(k-p+1))分解成对角矩阵,对角元分别为平稳的,振荡的和爆炸的自回归子模型,即存在一个非奇异的实矩阵R,使得 RPnR′=(1+o(1))
本试验对日本龟蜡蚧(Ceroplastes japonicus Green)、角蜡蚧(Ceroplastes ceriferus Fabricus)、白蜡绵粉蚧(Phenacoccus fraxinus Tang)、瘤大球坚蚧(Eulecanium gigantea Shinji)和朝鲜球蚧(Didesmococcus koreanus Borchsenius)等5种蚧虫基因组DNA的提取和微卫星
一个图若包含Hamilton圈,则称这个图是Hamilton图。众所周知,一个极大平图是3连通图。判定一个3连通平面图是否是一个Hamilton图,这个问题是NP完备问题。然而,Chvatal和Wigderson也分别证明了判定一个极大平图是否是Hamilton图,这个问题仍是NP完备问题。因此对极大平图的Hamilton性进行研究是有重要意义的。Whitney证明了没有分离三角形的极大平图是Ha
本文研究分为两部分。主要研究的内容为中华稻蝗抗菌肽分离的初步研究。昆虫的免疫系统没有像高等动物所具有的免疫球蛋白和补体系统,在长期的进化过程中,发展出了一套独特的免疫系统。自Boman H.G.领导的研究小组从惜古比天蚕(Hyalophora cecropia)的蛹中诱导分离得到第一个昆虫抗菌肽——天蚕素(cecropin)后,昆虫的免疫研究进入了一个新时期,对昆虫抗菌肽的研究具有重要的理论意义和
随机扩增多态DNA技术(简称RAPD)是二十世纪90年代发展起来的一项DNA分子多态检测技术,它建立在PCR技术基础上,以一系列不同随机排列的碱基序列—单链寡核苷酸为引物—对所研究的基因组DNA进行PCR扩增。该技术能够在没有任何遗传背景的情况下,对物种基因组进行DNA多态性分析。它不但能通过众多的引物检测大量的基因位点,且具有高效、快速、样品用量少和对材料要求不高等优点,目前已广泛应用于动植物的
设N为有限群G的正规子群,θ为N的G-不变的不可约复特征标。借助射影表示以及上同调理论等技术,对每个特征标三元组(G,N,θ)均定义了一个上同调元素ω(θ)∈H2(G/N,C*)以描述θ的可扩张性障碍,即θ可扩张为G的特征标当且仅当ω(θ)=1。 本文重点探讨了障碍映射ω:IrrG(N)→H2(G/N,C*)的若干乘法性质,我们证明了只要θθ′∈IrrG(N),就有ω(θθ′)=ω(θ)ω(