【摘 要】
:
面板计数数据在近年来引起了统计学者的广泛关注,这类数据经常出现在医学,经济学,人口学,社会学等研究领域中.本文主要研究了面板计数数据的假设检验与回归分析问题.首先,我们研究了具有不相同观测过程的面板计数数据的假设检验问题,我们提出了一类新的假设检验方法,并证明了检验统计量的渐近正态性.其次,我们考虑了面板计数数据与区间删失数据的联合回归分析问题,这里我们使用Sieve极大似然估计方法给出了回归参数
论文部分内容阅读
面板计数数据在近年来引起了统计学者的广泛关注,这类数据经常出现在医学,经济学,人口学,社会学等研究领域中.本文主要研究了面板计数数据的假设检验与回归分析问题.首先,我们研究了具有不相同观测过程的面板计数数据的假设检验问题,我们提出了一类新的假设检验方法,并证明了检验统计量的渐近正态性.其次,我们考虑了面板计数数据与区间删失数据的联合回归分析问题,这里我们使用Sieve极大似然估计方法给出了回归参数的估计,并通过利用Bernstein多项式逼近未知函数的办法来简化问题.此时得到的估计量具有相合性与渐近正态性.最后我们考虑了在加性均值模型下,当协变量带有测量误差时,面板计数数据的回归分析问题.我们利用估计方程与SIMEX方法给出了回归参数的估计,并证明了所得到的SIMEX估计的渐近正态性.
其他文献
本文关心几种带特定形状无界散射体的时域正反散射问题,我们分别建立数值方法对正反问题进行求解,并给出相关的分析.散射问题主要研究的是散射体对波场的散射情况,正问题通常是指已知入射波(声波或电磁波)和散射体信息,求解由于散射体存在而产生的散射场或远场,而反问题则是已知入射场和部分散射场或远场数据,来重构散射体的位置和形状.在各类散射问题中,本文关心的是不可穿透散射体对声波的散射.我们的分析在时域进行,
众所周知,现实世界中的许多现象都具有周期性.自法国数学家Poincare和俄国数学家Lyapunov以来对于连续动力系统的周期解存在性的研究一直是动力系统研究的中心课题之一.然而,并非所有的自然现象都能用连续的系统或者离散的系统来描述.目前,一些连续系统的理论和方法己经发展到了时标上,例如[10,78,55,53].时标是R中的任意非空闭子集,通常表示为T.时标理论的建立主要是为了研究连续和离散混
现实生活中,多数物理,医药,金融等问题均可由偏微分方程(PDEs)或者随机偏微分方程(RPDEs)来描述.很多时候,人们不只关心PDEs或者RPDEs解本身的性质,更关心能否通过控制方程中的某些变量,使得另一些变量达到预期的状态,同时保证代价最小,这就是典型的PDE或者RPDE最优控制问题.由于实际需求的驱动,系数确定和系数随机情况下的PDE最优控制问题得到了广泛的研究和关注([44,56,58,
氯氮平是临床应用较广泛的一种新型强效抗精神病药物,氯氮平引起意识障碍与粒细胞减少的副作用不乏报道,但该药引起锥体外系反应,实属罕见,现将所见一例报道如下:患者李××,男性,28岁,农民,因失眠、乱语、哭笑无常四月余,于1993年10月23日首次住院,入院时躯体及神经系统检查未见异常,诊断为精神分裂症。入院后用氯氮平50mg/次,每日2次,3日后改用氯氮平100mg/次,每日2次,于第5天上
里德堡态指的是原子或分子的一种状态。在该状态下,原子或分子中的一个电子被激发到主量子数较高的轨道。人们发现这些原子或分子里德堡态有很多奇特的性质,利用这些性质在很多研究领域得到了广泛的应用。原子分子里德堡态可存在于等离子或火焰环境中,在地球电离层以及星际气体中亦可能存在。随后人们发现当原子或分子与强激光相互作用时,原子或分子也可能被布居到里德堡态。这种里德堡态激发(Rydberg State Ex
本文主要是在总结前人工作的基础上,对一类Zakharov方程,Klein-Gordon-Zakharov方程、以及Zakharov-Rubenchik方程精确周期解的求法以及这些周期解的周期性质进行了研究.同时,我们还研究了(n + 1)维耦合的非线性Klein-Gordon方程组精确周期解的求法及其轨道稳定性.首先,本文受文献[1]的启发,结合Jacobian椭圆函数方法,我们求出了 Zakha
本文主要考虑非线性微分-差分方程的守恒律与Darboux变换及相关问题.全文共分五章.第一章主要介绍背景知识与涉及到的概念、理论和方法.第二章我们考虑广义Toda谱问题和广义相对Toda谱问题.首先利用屠格式,构造了两类可积的4-field微分-差分方程族,发现这两类方程族不仅可以约化为一些已知的微分-差分方程族,而且也可以约化为一些新的方程族.其次,我们证明了其中一类微分-差分方程族是Liouv
充满儿童情趣和具有教育意义的儿童诗歌伴随着幼儿的成长,是幼儿喜爱的精神食粮。幼儿诗歌主题单纯,内容浅显;语言凝练,节奏明快,韵律和谐,富有儿童情趣;读起来朗朗上口,易于朗读和记忆,是幼儿接触较多又非常喜爱的一种文学形式。在诗歌教学中,采取适当的方法,实施正确的教育,可以发展幼儿的创造性思维。
幼儿诗歌篇幅短,语言浅显易懂,富有韵律,且充满趣味,适宜幼儿学习。幼儿园教师可以通过诗歌教学,培养幼儿良好的品德,激发他们丰富的想象力,满足幼儿的精神需求。一、幼儿诗歌应用于幼儿教育中的意义(一)提高倾听水平学会倾听别人说话是幼儿语言能力发展的重要前提。幼儿诗歌韵律感强,旋律朗朗上口,可以有效集中幼儿的注意力,因此教师要重视引导幼儿集中注意倾听。幼儿诗歌语言浅显、篇幅简短,不仅有利于幼儿理解
近几十年来,数学工作者十分关注一些偏微分方程解的存在性、唯一性、正则性等方面的问题,尤其是对非线性椭圆方程解的研究.本文在加权Sobolev空间框架下,讨论了几类常指数和变指数情形下的椭圆方程解的存在性与非存在性,研究的内容包括非线性退化椭圆方程解的存在性与非存在性、带有退化强制项的椭圆方程重整化解和熵解的存在性、带有零阶项的非线性p(x)-Laplace方程重整化解和熵解的存在性以及一般的非线性