HL-2A装置上CO2激光色散干涉仪系统的研制

来源 :清华大学 | 被引量 : 0次 | 上传用户:ziwen74
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在等离子体实验物理研究中,等离子体电子密度是重要而又基本的参数之一。在密度诊断技术研究领域,激光干涉诊断技术是一种常规的诊断手段。然而随着装置规模增大(如ITER装置)和密度提高,等离子体密度引起的折射和条纹跳变会对远红外激光干涉仪造成较大的影响,而有望解决这些问题的短波长干涉仪又会受到较大的来自机械振动的影响,因此需要进行进一步的技术革新以研究能适应高参数等离子体装置的新干涉仪技术和系统。为此,本论文研制了国内首套适用于托卡马克装置的倍频色散干涉仪系统。该系统使用了较短波长的光源,利用基于倍频技术的信号调制方法消除了机械振动带来的影响,能够测量高密度、快速变化的等离子体密度。论文工作主要包括国内外干涉仪相关技术的调研及其存在问题的分析、色散干涉仪的原理设计、关键元器件特性研究、光路搭建以及在HL-2A装置和四川大学线性装置上的实际应用。在HL-2A装置上,系统的静态相位分辨率达到1.2°,平均密度测量分辨率达到1.74×1017/m3,时间分辨率达到20 kHz。而国外LHD上的类似倍频色散干涉仪静态相位分辨率仅达到4°。该套系统在HL-2A装置的弹丸注入实验中解决了当前干涉仪系统条纹跳变的问题。同时,在SCU-PSI线性装置上,系统测量到了密度超过1021/m3的高密度等离子体,证明了系统具有满足聚变燃烧等离子体的密度测量量程。论文工作有以下的特色创新:该套系统使用了射频激励激光器作为光源并获得了好的倍频效果。这种激光器比起国外同类系统的直流激励连续激光器,拥有功率高、结构紧凑、波束参数可细调等优点。同时,还设计了包含FPGA实时数据处理系统、离线软件数据处理系统、锁相放大器在内的多套数据处理系统,相较于国外类似干涉仪以锁相放大器为主的数据处理系统,该系统能满足提供实时反馈信号、实时观察系统相位及稳定性、离线分析处理数据等多种需求。在接下来的工作中,正在着手设计一套用于在建的HL-2M托卡马克装置的多道倍频色散干涉仪系统,以满足HL-2M装置密度反馈控制的需求。同时在干涉仪系统改进中,计划采用楔片的波束偏移补偿技术以及新的外差法调制倍频色散光路,以进一步提高系统的测量精度和时间分辨率。
其他文献
数控机床是现代制造业的核心装备之一,提高机床的加工质量和加工效率有重要研究意义和应用意义。本文在相关项目的支持下,对一种具有三个平动联动轴和三个旋转联动轴的六轴联动数控机床在运动学模型层面展开了优化其刀具运动轨迹和加工效率的相关研究。首先,根据六轴联动数控机床的实际机械结构和联动轴分布,建立了该机床的运动学模型。研究了该种机床的冗余联动特点,和不同联动模式和联动轴配置下对应的运动学模型。在机床运动
超短超强中红外光在超快化学、强场物理及阿秒科学等领域有不可替代的应用价值,近几年来该领域的研究逐渐受到越来越多的关注。然而由于传统激光晶体及非线性晶体的限制,长期以来超短超强中红外光源(特别是长波红外光源)始终是超快激光技术领域的一大挑战。本文针对这一困境,另辟蹊径从激光等离子体角度入手,在国际上首次提出并实验验证了一种基于等离子体“光子减速”机制产生相对论光强、波长可调谐的单周期长波红外脉冲新方
随着精准和个体化医疗概念的提出,越来越多的医院计划使用质子和重离子放射治疗。相比于光子,质子和重离子不仅有更好的物理剂量分布,而且有更强的生物效应。为了更准确地评估质子和重离子等高LET射线的生物效应,本文主要研究了两个问题:一是如何准确模拟不同LET射线所致的DNA损伤和分布以及不同类型的染色体畸变;二是如何建立基于DNA辐射损伤的细胞存活机理性模型。具体工作如下:(1)基于仅适用于光电子的纳剂
纤毛(也称为鞭毛)是基于微管组装的,突出于细胞表面的毛发状亚细胞结构。纤毛广泛存在于真核生物中,在运动、知觉感知、信号传导、胚胎发育及细胞周期调控中发挥着重要的作用。纤毛结构或功能的缺陷会导致多种疾病的发生,统称为“纤毛相关性疾病”,例如肾囊肿、多指症、内脏反转和呼吸道疾病等。大量研究显示多种纤毛疾病与鞭毛内运输机制(IFT)相关基因的突变有关,因此对IFT的研究可为诊断和治疗纤毛相关疾病提供理论
镁合金性能优异,应用前景广阔,然而有限的室温塑性变形能力限制了其生产应用。在镁合金的变形过程中,常会出现孪晶与孪晶、晶界及位错的相互作用,进而影响孪晶的形核及生长,对其塑性变形产生重要影响。本文利用分子动力学研究了镁中孪晶与孪晶、晶界及位错的相互作用,借助对应力分布、错配度及原子位移等的分析,对其内在机理进行深入探讨。研究表明,在施加切应变的情况下,单个{1012}孪晶的平均横向生长速度大于增厚速
挤压铸造是一种先进的近净成形工艺,它集成了铸、压成形的优势,应用于轻合金材料,可充分发挥材料的潜力,实现高性能、轻量化的零件成形制造。铸件-模具界面换热及压力传递是挤压铸造过程中的核心物理问题,因此深入研究挤压铸造铸件-模具界面换热行为和压力传递规律具有重要的应用价值和学术意义。本文通过设计挤压铸造实验用的模具和铸件、设计测温单元、精确安装压力传感器以及开展挤压铸造实验,建立了一套准确的铸型温度和
排放法规不断加严对直喷汽油机(GDI)的燃油雾化质量提出了更高的要求。闪沸喷射作为提升雾化质量的有效手段,受到了研究人员的广泛关注。然而对于多孔式喷油器,在闪沸条件下多个油束会相互聚拢发生喷雾坍塌。喷雾坍塌会显著改变缸内燃油分布,可能导致喷雾贯穿距升高并引起喷雾撞壁,为发动机的燃烧和排放性能带来不良影响。本课题围绕闪沸条件下喷雾坍塌的影响因素、机理和抑制手段三个方面开展了研究。在喷雾坍塌的影响因素
镁合金是重要的轻量化材料,挤压铸造是制造高性能结构件的先进成形方法,以具有工程应用价值的多元镁合金挤压铸造为应用背景,开展压力下凝固微观组织演化的实验研究及相场建模,对于深入理解压力下凝固机制,预测压力下凝固微观组织,进而指导挤压铸造技术开发具有重要的理论意义和应用价值。本文建立了透明合金压力下凝固过程原位观察的实验装置,采用透明合金,通过原位观察实验,系统研究了不同恒压力、周期性“升-降”压力、
通过有机朗肯循环回收利用内燃机余热是实现汽车节能减排的重要途径。涡轮低比速设计是提高车用有机朗肯循环系统轴系可靠性、降低系统成本的有效手段。低比速涡轮效率低是车用有机朗肯循环系统研发所面临的主要难点和瓶颈,深入研究低比速涡轮内部流动机理,探讨提高低比速涡轮效率的流动控制方法,具有重要的理论意义和工程价值。论文的研究工作主要包括以下几个方面:论文仿真研究了车用有机朗肯循环低比速涡轮在高、低压比工况的
随时间变化的磁场(电流)将会在导体结构中产生感应电流,我们称之为涡流。在托卡马克复杂的电磁环境中,真空室中的涡流将对等离子体放电产生多种影响。它会影响装置结构应力分布、影响等离子体击穿和加热效率、降低平衡反演和实时控制的精度、与不稳定性相互作用导致破裂等问题。尤其在类似SUNIST这样的短脉冲放电且拥有复杂真空室结构的装置中,真空室涡流对装置运行、平衡反演和控制、波加热、密度测量以及破裂阶段的物理