论文部分内容阅读
核能作为一种低碳、高效的清洁能源,受到人们的广泛关注。随着核电事业的发展,铀资源的需求急剧攀升,陆地铀资源已经不能满足核工业的需求,因此对海水、盐湖等水体中铀的分离提取有重要的意义。另一方面,随着核工业的飞速发展,大量的核废液也随之产生,核废液中仍含有大量的镧锕系金属离子。无论是从资源的可持续利用还是环境安全的角度考虑,对核废液中镧锕系金属离子的富集工作具有重大意义。因此,深入开展水体中镧锕系金属离子的分离提取工作是十分必要的。杯芳烃具有结构易修饰、离子识别能力强、辐照稳定性和热稳定性高等优点,因此在金属离子识别与提取的工作中有很好的应用前景。偕胺肟功能基团由氨基和肟基组成,因其对铀酰离子具有独特的螯合作用而广泛应用于铀酰离子的提取工作中。铕虽然是一种镧系元素,但具有与锕系元素相似的物化性质而常被用来模拟研究锕系元素,钕是一种稀土元素,具有较高的应用价值。本工作以铕、钕和铀为分离对象,基于杯芳烃和偕胺肟的独特性质,制备了六种分离材料并分别考察了它们对水溶液中Eu(Ⅲ)、Nd(Ⅲ)和U(Ⅵ)的分离性能。结合课题组前期工作基础,选择四种羧基修饰杯芳烃衍生物为萃取剂,采用FT-IR,1H NMR和MS分别对这四种杯芳烃衍生物进行表征,然后以溶剂萃取法研究了在不同pH、萃取剂浓度和温度下这四种杯芳烃衍生物对Eu(Ⅲ)和Nd(Ⅲ)的萃取行为。其中羧基修饰亚甲基桥杯[6]芳烃(C6ACOOH)对Eu(Ⅲ)和Nd(Ⅲ)的萃取能力最强。计算得到了焓变ΔH°、熵变ΔS°和吉布斯自由能ΔG°等萃取热力学参数。研究结果表明C6ACOOH对Eu(Ⅲ)的萃取是通过阳离子交换反应进行的,且该过程是一个放热过程。在萃取传质池中研究了C6ACOOH对Eu(Ⅲ)的吸附动力学,计算得到Eu(Ⅲ)在稀释剂氯仿中的传质系数为3.35×10-6 m/s,该动力学过程的八田数约在3.80×10-4-9.10×10-4范围内。通过研究转速、相体积比和离子浓度对初始萃取速率和八田数的影响,证明这个萃取反应是发生在有机相中的一个非常慢的反应,并通过计算分别得到了该反应的正逆反应速率常数。为了增强杯芳烃对铀酰离子的选择性提取能力,以腈基修饰亚甲基桥杯[8]芳烃(C8A-CN)为原料在羟胺的还原作用下将腈基转化为偕胺肟基,成功制得偕胺肟基修饰亚甲基桥杯[8]芳烃(C8A-AO),采用NMR,FT-IR,FE-SEM,XPS和TG等手段对其进行表征。考察了在铀酰离子浓度较低的溶液中(小于1 mg/L)C8A-AO对铀酰离子的吸附行为。研究了pH、接触时间、初始铀酰离子浓度和温度等因素对其吸附行为的影响。研究发现在偏中性溶液中,C8A-AO对铀酰离子的吸附率可达95%以上。初始铀酰离子浓度较低时,C8A-AO对铀酰离子的吸附具有很高的分布系数(Kd)。吸附机理研究发现该吸附过程符合准二级动力学模型和Langmuir模型。热力学研究表明该吸附过程是一个自发吸热的过程。通过模拟海水中吸附性能研究发现,C8A-AO是一种有潜在价值的海水提铀吸附剂。以活性碳纤维(ACFs)为基体,采用化学接枝法制备了偕胺肟基修饰的活性碳纤维(ACFs-AO),并以XPS、FE-SEM、元素分析、TG和BET等手段对材料进行表征。研究了pH、接触时间、初始铀酰离子浓度和温度等因素对ACFs-AO吸附铀酰离子的影响。研究发现ACFs-AO对铀酰离子的吸附过程符合准二级动力学模型和Langmuir模型。吸附结果表明ACFs-AO对铀酰离子的最大吸附量为191.6 mg/g与ACFs的70.52 mg/g相比明显提高,这主要归因于ACFs-AO材料表面偕胺肟基团与铀酰离子的螯合作用。热力学研究结果表明ACFs-AO吸附铀酰离子是一个自发吸热的过程。ACFs-AO在竞争离子共存的模拟核废液中具有较好的选择性吸附能力。并且ACFs-AO在循环再生后仍有较好的吸附能力。通过对比吸附前后溶液pH的变化和ACFs-AO的XPS结果,推测ACFs-AO吸附铀酰离子是通过材料表面偕胺肟基团氨基和羟基的孤电子对与铀酰离子的空轨道之间的螯合作用实现的。因此,ACFs-AO在从核废液中提取铀酰离子的工作中具有潜在的应用价值。新型高效分离材料的制备及性能研究为水溶液中Eu(Ⅲ)、Nd(Ⅲ)和U(Ⅵ)的分离提取工作提供了坚实的理论基础和实验依据,同时为实现核工业中镧锕系元素的有效分离提供了新的研究思路。