【摘 要】
:
传统的空间望远镜口径小,聚光能力弱,无法捕获到空间中更暗、更弱的目标,而增大空间望远镜的口径能够极大提高分辨率。受限于火箭的运载能力,致使大型空间望远镜入轨应用成为困难。目前可行的方法是将空间望远镜设计为模块化结构,模块化组件被运送到特定轨道后,借助空间机械臂进行在轨组装和调整,最终获得完整且运行稳定的空间望远镜。由于空间环境较为复杂,空间机械臂以完全自主的方式执行在轨任务存在很多风险和限制,目前
【基金项目】
:
国家自然科学基金重点项目“面向太空望远镜在轨组装的空间机器人系统关键技术研究”
论文部分内容阅读
传统的空间望远镜口径小,聚光能力弱,无法捕获到空间中更暗、更弱的目标,而增大空间望远镜的口径能够极大提高分辨率。受限于火箭的运载能力,致使大型空间望远镜入轨应用成为困难。目前可行的方法是将空间望远镜设计为模块化结构,模块化组件被运送到特定轨道后,借助空间机械臂进行在轨组装和调整,最终获得完整且运行稳定的空间望远镜。由于空间环境较为复杂,空间机械臂以完全自主的方式执行在轨任务存在很多风险和限制,目前主要通过遥操作的控制方式完成在轨任务。本文构建了空间望远镜在轨组装遥操作平台,对在轨组装空间望远镜实现任务规划以及对基于时域无源性的遥操作控制算法进行研究。首先,设计了空间望远镜在轨组装遥操作平台。根据在轨组装任务特点,对在轨组装遥操作系统进行了需求分析。对空间机械臂建立运动学模型,并推导了基于关节变量参数化的逆运动学。搭建了预测仿真场景,实现了对在有时延存在下的动作预测,为操作者提供了视觉临场感。此外,将力反馈手柄接入遥操作系统,通过手柄的输入控制机械臂运动,同时手柄向操作者提供从端的反馈力。其次,对在轨组装空间望远镜实现了任务规划。设计了在轨组装空间望远镜总体方案,结合不同的遥操作模式,对在轨遥操作任务进行分析、分解和规划。在任务级遥操作模式下,使用样条插值方法对空间机械臂进行轨迹规划,经仿真验证后,能够实现预期的运动轨迹;在主从遥操作模式下,设计了遥操作运动映射策略,包含了靠近和远离目标位置时对应的运动映射系数变化策略。最后,采用基于时域无源性的控制算法,改善了双边遥操作系统的稳定性和操作性。对单自由度双边遥操作系统建立动力学模型,基于无源性理论,通过引入无源性观测器和无源性控制器使通讯环节无源,验证了在时延下遥操作系统的稳定性。对基于时域无源性控制框架进行改进,引入了虚拟质量-弹簧的无源系统和基于感知死区的数据压缩算法。引入虚拟质量-弹簧的无源系统后,在时延为1秒时,能够弱化因手柄低速而产生的突变力;引入感知死区算法后,在不引发信号明显失真的情况下,降低了网络通信的包速率。
其他文献
海岛建设是我国海洋强国战略的重要步骤。由于条件限制,海岛建设中缺乏传统的砂、石、淡水建筑材料。而在东南沿海地区分布着大量的珊瑚礁,充分利用这些珊瑚礁石和碎屑,用海水作为拌合用水,将能为海岛建设提供便利条件,对开发海岛资源、维护海洋权益有重要意义。本文首先对珊瑚石的粒形特征、基本物理和力学性能进行研究,为制备珊瑚混凝土奠定基础。研究表明,珊瑚石是一种具有特殊结构的多孔轻质材料,孔隙分布均匀且相互连通
电磁阻尼器是一种集电磁、力学、控制学于一体的新型结构,其作为一种新型抑振措施,由于其通过电磁力对转子系统进行振动控制,无摩擦、无需润滑、寿命长等优点,逐渐应用于实际。当将电磁阻尼器施加于转子系统构成电磁阻尼器-转子系统,其作为一种新型转子抑振系统,研究其非线性振动特性有重要的理论及实际意义。本文致力于研究电磁阻尼器-转子系统的非线性振动特性。针对电磁阻尼器-单盘转子系统,通过Lagrange方程建
汽车产业是我国国民经济的支柱,是我国的第二大产业。随着汽车保有量的快速增长,给我国的石油安全和环境保护带来了巨大挑战,我国石油对外依存度逐渐增高,实现汽车轻量化以节能减排势在必行。铝合金的密度小、强度高,是一种优良的轻量化材料,从材料轻量化和结构轻量化的方向考虑,本文主要研究车身覆盖件用7075-T6铝合金搅拌摩擦焊拼焊板的温成形性能。首先通过高温拉伸实验的方法,获得铝合金拼焊板在不同温度和不同应
建筑震后功能可恢复是当前地震工程领域的一项重点研究方向,本文针对高层剪力墙结构中的连梁,提出了三种可装配连接的可更换钢连梁形式,完善了其结构设计方法,并对其更换性能、力学性能和抗震性能展开试验和模拟研究,主要完成的工作如下:第一,针对极短型剪切屈服连梁进行了消能梁和非消能梁截面设计以及连接部位设计,提出了螺栓群弯剪连接、端板连接和端板-抗剪键连接三种纯装配连接方式,完善了可更换连梁的设计方法;模拟
随着中国经济不断发展,科技水平不断提高,对于广泛应用在数控机床、机器人和航天事业等领域的机电伺服系统的指标精度要求也越来越高。在伺服系统中,因机电设备具有传动轴、变速器等柔性设备,或因设备转动惯量大等内部因素,或因地基松动、噪声干扰等外部因素,常常引起伺服系统的机械谐振,影响伺服机构动态性能和造成系统失稳,严重阻碍了设备的运行。针对上述问题,本文将对不同原因引起的谐振进行分类,并针对每一种原因引起
荧光测温法实现了非接触式实时探测,可支持对较复杂环境、快速移动目标或无法直接接触的对象进行测温,其中荧光强度比测温方法由于受外界干扰小、抗激发功率强、空间分辨率好、响应迅速、能够测量小物体等优点一直受到人们的广泛关注,并且在许多领域都具有十分重要的应用,例如荧光显微镜、纳米测温、光动力疗法、光遗传学、癌症组织热疗、安全油墨、光电转换器、和三维体积显示器等等。然而现阶段已发现的光学温度计的相对灵敏度
在研究细胞理化特性时,凝聚微滴(Coacervate microdroplet)被广泛用作原细胞或无膜细胞器模型。基于冷凝物(Condensate)在生物体内的形成/解离与生理学、病理学之间的紧密联系,在体外构筑凝聚微滴并实现灵活的动态调节,对探究冷凝物响应和促进生物学功能的能力具有重要意义。为此,本文提出了一种基于光控凝聚微滴的无膜原细胞模型。相较于离子调控、p H和温度调控等手段,光具有良好的
近年来,微纳米马达在污水处理方面展示出广泛的应用,得到了各国科学家们的关注。然而,在该微纳米马达的应用过程中,依旧面临着实际应用中的诸多挑战,例如需要外加驱动马达运动的燃料、易对环境产生二次污染以及去除污染物种类单一等问题。为了解决以上问题,本研究设计并制备了利用污染物自身作为底物而无需外加燃料实现自驱动的漆酶马达,详细地研究了代表性工业污染物双酚A和刚果红对漆酶马达运动行为的增强效果,全面地分析
当前铁电材料在能量存储方面受到广泛关注,铁电薄膜相对块体材料较高的击穿场强,能获得比块体铁电材料更为优异的储能效应,其中锆钛酸铅(PbZrxTi1-xO3)薄膜储能更为优异。常用的提高铁电薄膜储能效应的方法主要有化学掺杂、异质结结构设计等方式,但是这些方式受固溶度、扩散系数等不可控制因素的影响,难以获得储能性优异的铁电材料。通过调控辐照粒子能量和注量,可以实现材料的宏观性能的调控。本文选择不同能量
轴承是仪器装备中常见的旋转部件,作为大型精密仪器装备中的关键部件,其运行状态直接影响系统的安全性和稳定性,基于此准确预测轴承的剩余使用寿命非常必要。随着数据量的增加以及对预测准确性要求的提高,传统的预测方法无法满足工业需求,基于深度学习的寿命预测方法应用而生。本文首先对轴承的振动机理进行研究,明确故障信息与振动信号之间的关系;并计算出轴承的变柔性和变刚度振动频率以及振动方程的通解,根据固有频率确定