【摘 要】
:
孪生支持向量回归机(Twin Support Vector Regression,TSVR)是一种解决回归问题的机器学习算法。由于TSVR只需求解一对规模较小的二次规划问题,其训练效率高于支持向量回归机,因此TSVR已逐渐成为机器学习领域的研究热点。但是,目前TSVR的训练算法大部分都只是离线训练算法,无法高效处理在线增量学习问题。本课题致力于提升TSVR三种变体在增量环境下的训练效率,设计其相应
论文部分内容阅读
孪生支持向量回归机(Twin Support Vector Regression,TSVR)是一种解决回归问题的机器学习算法。由于TSVR只需求解一对规模较小的二次规划问题,其训练效率高于支持向量回归机,因此TSVR已逐渐成为机器学习领域的研究热点。但是,目前TSVR的训练算法大部分都只是离线训练算法,无法高效处理在线增量学习问题。本课题致力于提升TSVR三种变体在增量环境下的训练效率,设计其相应的增量学习算法,取得的研究成果如下:针对已有的最小二乘孪生支持向量回归机的增量学习算法存在构成的核矩阵无法很好地逼近原核矩阵的问题,提出了一种增量式约简最小二乘孪生支持向量回归机。该算法首先使用约简方法,判断核矩阵列向量之间的相关性,筛选出用于构成核矩阵列向量的样本作为支持向量以降低核矩阵中列向量的相关性,使得构成的核矩阵能够更好地逼近原核矩阵,并能够保证解的稀疏性。然后通过分块矩阵求逆引理高效增量更新逆矩阵,进一步缩短了算法的训练时间。结果表明,与现有的代表性算法相比,所提出的算法能够获得稀疏解和更接近离线算法的泛化性能。针对拉格朗日ε型孪生支持向量回归机在增量环境下无法高效更新模型的问题,提出了一种基于半光滑牛顿法的增量式拉格朗日ε型孪生支持向量回归机(Incremental Lagrangianε-Twin Support Vector Regression,ILETSVR)。ILETSVR通过矩阵求逆引理增量更新二阶梯度矩阵,降低矩阵求逆的时间复杂度,加快模型的训练速度。然而,在解决非线性回归问题时,核矩阵规模的不断增大导致ILETSVR的训练速度大幅下降。为此,提出了一种增量式约简拉格朗日ε型孪生支持向量回归机(Incremental Reduced Lagrangianε-Twin Support Vector Regression,IRLETSVR)。该算法在ILETSVR的基础上引入约简方法,以牺牲较少的预测精度为代价,限制逆矩阵的规模。结果表明,ILETSVR能够高效解决增量环境下的线性回归问题,并获得和离线算法相同的泛化性能;IRLETSVR能够极大地加快增量环境下非线性回归模型的训练速度,并获得稀疏解和接近离线算法的泛化性能。针对现有ε型孪生支持向量回归机的训练算法无法高效处理线性回归的增量学习问题,提出了一种精确增量式ε型孪生支持向量回归机(Accurate Incrementalε-Twin Support Vector Regression,AIETSVR)。首先通过计算新增样本的拉格朗日乘子以及调整边界样本的拉格朗日乘子,尽可能减少新增样本的二次损失对原有样本的影响,使得大部分原有样本依然满足Karush-Kuhn-Tucker条件,从而获得一个有效的初始状态;然后对异常拉格朗日乘子进行逐步调整;最后从理论上分析了AIETSVR的可行性和有限收敛性。结果表明,AIETSVR能够获得精确解,在缩短训练时间上优势显著。
其他文献
目标跟踪是计算机视觉的重要分支之一,正随着信息科技的发展在人机交互、智能机器人、自动驾驶、国防安全、视频监控和智慧城市等领域中得到越来越多的重视和应用。尽管视觉跟踪技术在过去数十年中得到了长足的发展,但由于目标遮挡、尺度变化、外观形变以及相似物体干扰等跟踪环境因素的复杂多变,能够在多应用场景下满足对跟踪的精度、实时性和鲁棒性等需求仍是一项艰巨但有着光明前景的工作。本文基于深度学习算法模型,针对长时
在智能护理机器人领域,如何帮助机器人快速且准确地识别护理对象的动作行为已成为该领域的热点研究问题。准确识别动作行为是护理机器人实现护理智能化的先决条件,且可增强护理机器人的动态感知能力,故行为识别技术是护理机器人实现智能化的重要组成部分。基于深度学习的行为识别技术具有建模过程简便且训练模型容易的优点已逐渐成为行为识别技术的发展趋势,但基于深度学习的行为识别技术在识别准确率、泛化能力及收敛速度等方面
随着人类生产生活方式的不断更新变化,人们开始更加注重自身的健康问题以及生存环境的安全问题,特别是对各种有可能危害健康和破坏大气环境的有毒有害气体的加以关注。气体传感器作为一种能够监测各种气体浓度和成分的装置已经被广泛应用于众多场景,也吸引了更多人的目光。因金属氧化物半导体式气体传感器自身拥有的一系列优势,例如性能相对较好、器件结构简单以及性价比高等,而成为了许多研究人员争相报道的对象。很多时候人们
近年来,随着科技的不断进步发展,移动机器人相关技术已逐步在人类实际生活与生产过程中发挥重要作用,相关行业领域对于移动机器人的性能需求也愈发迫切。自主位姿估计与运动控制作为移动机器人在未知环境中完成工作任务的技术基础,近些年来引起了国内外学者的广泛关注。针对移动机器人在复杂环境下的实际功能需求,本文利用单目视觉、IMU与轮式里程计实时传感信息,进行移动机器人多传感信息融合位姿估计与速度控制研究。首先
经济社会的发展和生产力的提高促使机器人的应用越来越广泛,随着传感器技术的进步,机器人系统拥有了更加强大的探测和感知能力,大大推动了机器人应用技术的发展。但当前大部分的移动机器人在进行自主导航的过程中,其数据源严重依赖于单一传感器,且存在总线协议不统一、实时性差、应用较为复杂等问题。因此本课题基于ROS平台和EtherCAT通讯技术,将轮式里程计、激光雷达和深度相机等传感器进行融合,搭建了一个能够完
Takagi-Sugeno-Kang(TSK)模糊系统的特点是能使用线性模型的方法求解非线性模型。TSK模糊系统的这个特点使得其在众多的领域都受到了广泛的关注。但是,与其它有监督学习一样,TSK模糊系统需要充足的信息。然而,在真实世界的应用中,训练数据经常是有限的,而模型也不能充分的挖掘数据中的信息,因此很容易导致过拟合问题。现有的TSK模糊系统方法,更多的把目光放在了模型结构的研究上,忽视了实际
RNA结合蛋白(RBP)是一类伴随RNA调控代谢过程,且与RNA结合的蛋白质的总称。一种RBP可能存在多种靶标RNA,其表达缺陷会造成多种疾病。通过寻找功能结构相似的RBP可以为治疗癌症等疾病的RNA疗法提供帮助。在RBP识别的过程中,一个关键的步骤是获取RNA有效特征和使用RBP之间的结合相似性网络来学习它们之间的联系。本文针对上述描述的RBP识别提出了两个多视角多标签特征学习的新策略,较已有的
在复杂工业过程中,对运行中的某些关键变量进行实时监控具有重要的意义,然而受到技术条件有限、检测装置昂贵以及现场环境恶劣等不利因素的影响,这些变量难以利用硬件传感器检测得到。在这种情况下,软测量技术得到应用,通过训练集构建数学模型,实现对新样本质量变量的实时估计。软测量技术通常需要大量有标记样本才能完成高精度模型训练,然而在实际工业过程中常常是无标记样本数量较多,有标记样本数量稀少,且获取成本高。因
音频携带了城市中大量关于日常环境、生活场景和物理事件的信息。通过深度学习方法智能分类识别出各个声源并提供相应的运用与服务,在构建智慧城市中具有巨大的潜力与应用前景。其被广泛运用于噪音监控、城市安防、多媒体信息检索、智慧工厂等方面。但当前已有的城市音频分类模型仍存在分类准确率不够高、泛化能力不够强以及噪音鲁棒性较弱等问题,针对上述问题论文进行了如下研究:(1)为解决城市音频分类领域中现有模型分类准确
多自主体系统协调控制是近几十年的热门研究领域,其研究成果大量应用于无人机编队飞行、无线传感网络和多机器人协调控制等工程领域。一致性控制是多自主体系统协调控制的分支研究领域,控制目标是通过自主体之间的控制协议,利用局部的信息,使所有自主体状态趋于一致。而固定时间一致性控制,要求所有自主体在固定时间内实现状态一致,比传统一致性控制收敛速度更快。在实际工程环境中,干扰和非线性动态会影响系统稳定性,是不可