论文部分内容阅读
超材料凭借优异的光学特性如人造磁性、负折射率等,近十几年来在诸多领域获得广泛关注。不同于自然界传统材料,超材料的光学特性是由构成其结构的人造单元所决定,超材料为研究人员提供了极大的自由度,通过改变结构单元的形状、材料、周期大小或周期数来实现所需要的特性。超表面是三维超材料的二维化,为避免超材料复杂的加工工艺而衍生出来,超表面制备工艺简单,可以灵活调控光场特性,如金属结构单元组成的金属超表面,可以实现对入射光偏振、相位和振幅的调控。随着超表面的研究进入近红外和可见光波段,金属的本征损耗问题日渐凸显变得无法忽略。介质超表面的提出避免了金属超表面的损耗问题,介质超表面结构功能设计的理论基础为米氏散射。根据工作原理不同,介质超表面可以分为两类:一是相位梯度超表面,梯度超表面通过在亚波长尺度引入相位梯度实现对光场的调控,光束偏折特性遵从广义斯涅耳定律;二是谐振型超表面,谐振型超表面利用谐振特性实现光场增强,凭借小腔模体积、高品质因子以及集体相干共振特性,谐振型超表面可以有效增强光与物质相互作用以及抑制辐射损耗。随着介质超表面研究的日益深入,极高品质因子谐振可以通过打破超表面结构单元对称性激发,原因是结构对称性打破,超表面中完美的连续域束缚态(BICs)模式转为准BICs模式同时保持高品质因子。
本论文围绕着高品质因子(Q值)谐振型介质超表面的设计与制备开展一系列仿真优化与实验摸索,成功制备出高Q值谐振型介质超表面,探索高Q值谐振型超表面在折射率传感上的应用,创新性的将高Q值谐振型超表面用于增强二维薄膜材料与硅缺陷的发光。具体研究内容如下:
(1)提出一种基于氮化硅材料的高Q值超表面结构,详细分析超表面高Q值谐振特性的形成机理以及超表面结构参数对Q值的影响。最终完成超表面样品的制备与测试,得到Q值约16670,透射谐振峰消光比约12dB的超表面器件。超表面结构单元体积和周期的变化可以调节超表面Q值和谐振波长,为后续实验奠定了基础。
(2)基于高Q值介质超表面,利用高Q值超表面的窄线宽谐振特性探测外界折射率变化。当外界折射率变化时,超表面谐振峰位置与消光比会发生改变,对比折射率变化前谐振峰位置与消光比,得出折射率传感品质因子,最终得到超表面的折射率传感品质因子可达367。而且,外界折射率变化时,超表面谐振峰位置与谐振消光比大小会同时变化,具有双变量探测的潜力。该高Q值超表面器件可以应用在传感领域。
(3)创新性的将高Q值谐振型超表面与二维薄膜材料结合,提高二维材料发光效率,在玻璃衬底上沉积氮化硅薄膜制备高Q值孔型超表面样品,通过周期调节将超表面谐振峰移至可见光波段。在超表面样品上分别转移MoS2和WSe2薄膜材料,在室温连续光泵浦下,超表面谐振峰处对MoS2和WSe2薄膜的发光增强均超过30倍。该高Q值超表面器件可以应用在薄膜材料发光增强领域。
(4)提出一种基于SOI的非对称孔型高Q值超表面结构,原理是通过打破对称性将完美束缚的BICs模式转为准BICs模式同时保持高Q值,仿真上Q值可以超过1×108,详细分析了高Q值谐振的产生机理。最终在220nm的SOI材料上完成超表面样品制备,将非对称孔型超表面谐振峰移至1278nm处,增强超表面非对称孔刻蚀过程形成的碳-碳对缺陷(G-center)发光,最终对G-center发光峰的发光强度增强40倍,在低功率密度下发光峰出现类似于极低阈值激光器的线宽缩窄和超线性功率依赖特性。该高Q值超表面器件可以有效增强G-center发光,在硅基光源领域有着极大的应用潜力。
本论文围绕着高品质因子(Q值)谐振型介质超表面的设计与制备开展一系列仿真优化与实验摸索,成功制备出高Q值谐振型介质超表面,探索高Q值谐振型超表面在折射率传感上的应用,创新性的将高Q值谐振型超表面用于增强二维薄膜材料与硅缺陷的发光。具体研究内容如下:
(1)提出一种基于氮化硅材料的高Q值超表面结构,详细分析超表面高Q值谐振特性的形成机理以及超表面结构参数对Q值的影响。最终完成超表面样品的制备与测试,得到Q值约16670,透射谐振峰消光比约12dB的超表面器件。超表面结构单元体积和周期的变化可以调节超表面Q值和谐振波长,为后续实验奠定了基础。
(2)基于高Q值介质超表面,利用高Q值超表面的窄线宽谐振特性探测外界折射率变化。当外界折射率变化时,超表面谐振峰位置与消光比会发生改变,对比折射率变化前谐振峰位置与消光比,得出折射率传感品质因子,最终得到超表面的折射率传感品质因子可达367。而且,外界折射率变化时,超表面谐振峰位置与谐振消光比大小会同时变化,具有双变量探测的潜力。该高Q值超表面器件可以应用在传感领域。
(3)创新性的将高Q值谐振型超表面与二维薄膜材料结合,提高二维材料发光效率,在玻璃衬底上沉积氮化硅薄膜制备高Q值孔型超表面样品,通过周期调节将超表面谐振峰移至可见光波段。在超表面样品上分别转移MoS2和WSe2薄膜材料,在室温连续光泵浦下,超表面谐振峰处对MoS2和WSe2薄膜的发光增强均超过30倍。该高Q值超表面器件可以应用在薄膜材料发光增强领域。
(4)提出一种基于SOI的非对称孔型高Q值超表面结构,原理是通过打破对称性将完美束缚的BICs模式转为准BICs模式同时保持高Q值,仿真上Q值可以超过1×108,详细分析了高Q值谐振的产生机理。最终在220nm的SOI材料上完成超表面样品制备,将非对称孔型超表面谐振峰移至1278nm处,增强超表面非对称孔刻蚀过程形成的碳-碳对缺陷(G-center)发光,最终对G-center发光峰的发光强度增强40倍,在低功率密度下发光峰出现类似于极低阈值激光器的线宽缩窄和超线性功率依赖特性。该高Q值超表面器件可以有效增强G-center发光,在硅基光源领域有着极大的应用潜力。