LD泵浦脉冲固体激光器输出功率提高的若干关键技术探索研究

来源 :华中科技大学 | 被引量 : 0次 | 上传用户:listsetmap
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
固体激光器在工业领域、医疗领域、科学研究领域及国防军事领域有着极其重要的应用。掺钕固体工作物质的吸收谱与激光二极管(laser diode, LD)的输出波长匹配,适合采用LD作为其泵浦源。LD泵浦的掺钕固体激光器具有效率高、结构紧凑和工作寿命长的优势,且是四能级系统,激光阈值低。克服热效应的限制而提高固体激光的输出功率以及通过激光脉冲技术产生短脉冲激光一直备受研究者的关注。本文针对于LD泵浦的Nd:glass锁模飞秒激光器、LD泵浦的声光调QNd:YAG纳秒激光器及LD泵浦的半导体可饱和吸收镜(semiconductor saturable absorber mirror, SESAM)被动调QNd:YVO4皮秒微片激光器的发展面临的技术限制,提出了若干关键技术来突破这些限制并进行了实验研究。本论文取得的主要研究成果包括如下几个部分:
  提出利用旋转圆盘介质激光器技术来突破LD泵浦的Nd:glass锁模飞秒激光器的输出平均功率的限制。采用直径为15mm的Nd:glass圆盘,输出了高功率的飞秒脉冲激光,其平均功率为0.49W,脉冲的宽度为324fs。而此前报道的LD泵浦的Nd:glass锁模飞秒激光器的平均输出功率一般不超过0.13W。验证了旋转圆盘介质激光器技术可突破LD泵浦的Nd:glass锁模飞秒激光器输出平均功率的限制。
  采用直径为50mm的Nd:glass圆盘,进行了高功率旋转圆盘锁模飞秒激光器功率扩展的尺寸放大的实验研究。得到了平均输出功率为1.8W的飞秒脉冲激光,据我们所知,这是目前报道过的从LD泵浦的Nd:glass飞秒激光器中获得的最高功率,且脉冲宽度为350fs,重复频率为28MHz,相应的单脉冲能量为64nJ,峰值功率为183kW。通过利用大直径的Nd:glass圆盘,实现了高功率旋转Nd:glass圆盘锁模飞秒激光器的平均输出功率尺寸放大。
  提出了一种低成本的“准旋转”机构来实现可水冷的高功率旋转圆盘介质激光器,并在机械上得以实现。利用LD作为泵浦源,对基于“准旋转”机构的水冷旋转Nd:YAG激光器的连续输出特性进行了实验研究,在泵浦光斑直径为1.5mm时,获得了60W的平均输出功率,光-光转换效率为40%。并在谐振腔内插入声光Q开关,当泵浦光斑直径为3mm且调Q的重复频率为7kHz时,输出了高功率的纳秒脉冲,其平均输出功率为27.8W,脉冲宽度为290ns,单脉冲能量为4mJ,相应的峰值功率为14kW。基于“准旋转”结构的可实现水冷的高功率旋转圆盘介质固体激光器为突破纳秒激光器热效应的限制提供一个可能的低成本技术雏形。
  利用调制深度高达40%的SESAM,从LD泵浦的300μm厚的Nd:YVO4调Q微片激光器中得到了最短43ps的脉冲,且重复频率为140kHz,单脉冲能量为19nJ,相应的峰值功率是442W。而采用调制深度为24%的SESAM,获得的最短脉冲为60ps。利用高调制深度的SESAM是突破被动调Q皮秒微片激光器输出脉冲宽度限制的一种可行的技术。
  本论文的研究基于LD泵浦的掺钕固体激光器。为提高锁模飞秒激光器和声光调Q纳秒激光器的平均输出功率及缩短SESAM被动调Q的皮秒微片激光器的输出脉冲宽度作了关键技术探索。取得了有意义的成果,这对于推动LD泵浦的脉冲固体激光器的发展具有显著的意义。
其他文献
随着5G通信、云计算、数据中心迅猛发展,基于SOI平台片上光互连作为一种更有前途和吸引力的技术用来缓解通信瓶颈、满足日益增长通信容量的需求,并且由于其大传输容量、高集成度和低功耗的特性而受到了广泛的关注。硅基集成模分复用技术使我们能够利用单载波多个空间模式为独立的信道来传输数据信息,为解决单一波分复用带宽不足的严峻问题提供了新的极具吸引力和有效解决方案。然而,传统的波导硅多模器件尺寸较大,严重限制了单片高密度集成模分复用系统的发展。另一方面,近年来逆设计方法由于可以在亚波长尺度上灵活地折射率剪裁和超强的光
随着新一代移动通信网络的升级和新一轮信息技术的迅猛发展,信息化促使人类生活方式和社会体系发生深刻变革,全球光纤传送网的数据承载能力不断提升,研究新型超大容量信息传输技术已经成为未来光纤通信发展的必然趋势。受限于非线性香农效应,传统单模光纤的通信容量已经逼近其极限,光信号在波长、偏振、时间等方面的复用潜能已被充分挖掘,光信号空间维度作为最后一个可复用维度,空分复用技术一致被认为是满足未来光纤通信容量持续增长的必然选择。论文面向空分复用光纤的偏振保持特性开展研究,重点探索熊猫型椭圆芯保偏少模光纤设计制备及性能
光在纳米结构中的散射与传输现象广泛存在于科学和工程领域,长期以来人们都对此非常感兴趣。该领域不仅与众多学科密切相关,比如宇宙学、气象学、海洋学、光纤通信等,同时也不断地涌现出新的见解和重要的应用,比如光镊、光捕获、各向异性或双各向异性波导等。
  在对光散射的分析中,多极子理论是用来描述电磁场分布的重要工具。但是以往的研究仅仅关注于强辐射方向上的电场强度、偏振、对称性等性质,忽略了辐射暗点上的拓扑性质,在拓扑理论如火如荼发展的今天无疑是令人意外的。而且新的拓扑性质在基本工具中的出现必然会带来理论和应
宽谱中红外激光光源在红外显微光谱学、环境监测、医疗诊断以及超短脉冲产生等领域有着广阔的应用前景。本论文主要围绕如何拓展同步泵浦光学参量振荡器(SPOPO)输出中红外激光的瞬时光谱带宽来开展研究,并取得了一定的研究进展。获得的主要研究成果如下:
  (1)提出了一种在SPOPO中通过配置多通道运转和腔内光谱合束,实现宽谱中红外激光输出的技术方案。通过在SPOPO中加入空间色散元件以及多个反射镜,实现了单个谐振腔中多个不同波长通道的同时、独立地工作,以及各通道的腔内光谱合束;在单路泵浦、单块非线性晶体的
钙钛矿和有机太阳能电池具有制作工艺简单、机械柔性好等优点,是近年来的研究热点。电子传输层是钙钛矿和有机太阳能电池中重要组成部分,它承担提取、传输电子的任务,直接影响着太阳能电池的能量转换效率。目前,在钙钛矿、有机太阳能电池中已经成功开发出多种电子传输层材料,包括金属化合物、有机小分子以及有机聚合物等,它们在电子传输性能与制备工艺方面都有着各自的优势。但是不同的器件结构(如柔性器件)和界面环境对于电子传输层的要求也有所不同。为了实现高效柔性钙钛矿和有机太阳能电池,仍需要开发可低温加工、机械柔性好的电子层材料
光纤网络是现代化通信的重要组成部分,然而层出不穷的光纤窃听事件和飞速发展的窃听技术,已经严重威胁了光纤通信的安全,光纤通信的信息安全成为人们最为关注的问题。随着计算机计算能力的提升,基于传统加密算法的信息安全技术安全性受到挑战,光纤通信系统的安全性无法得到保证。光纤物理层防护技术通过光学器件的物理特性和超快光学信号处理方法,可以在物理层上实现光信号的信息安全,解决传统加密算法面临的挑战,是实现安全光纤通信系统的有效方法。然而随着5G时代的到来,数据中心通信速率已从单通道10Gb/s向100Gb/s甚至40
钙钛矿太阳能电池具有可溶液加工,低成本,光电特性优异等优点,近十年来飞速发展,目前小面积(<1cm2)器件的认证效率已经超过25%,未来有望实现商业化。在钙钛矿太阳能电池中,制备高质量的钙钛矿吸光层是实现高效稳定器件的关键。通常钙钛矿前驱体中含有化学活性基团,如有机胺等,因此探究钙钛矿与下层功能层之间的作用,以及如何利用界面调控来制备高质量钙钛矿薄膜是进一步提高器件性能和稳定性的关键。在本论文中,以反式平面钙钛矿太阳能电池为研究对象,主要研究钙钛矿薄膜与下层高分子空穴传输层之间的相互作用,以及对器件性能参
金属卤化物钙钛矿材料由于其优异的光电特性和可溶液法制备的特点,引起了科研工作者们的广泛关注。经过近十年的发展,单结钙钛矿太阳能电池的实验室公证效率已经达到了25.2%,具有广泛的应用前景。然而,稳定性等问题仍然制约着钙钛矿太阳能电池的产业化发展,基于TiO2/ZrO2/C三层介孔膜结构的可印刷介观钙钛矿太阳能电池具有良好的结构稳定性,通过改善钙钛矿吸光材料在介孔膜中的结晶可获得高效稳定的钙钛矿太阳能电池;另一方面,二维钙钛矿材料通常具有良好的材料稳定性,通过构建二维/三维复合钙钛矿材料可有效提升钙钛矿太阳
随着5G时代的到来,物联网智能系统得以迅速发展,物联网设备的需求量呈现出指数增长的趋势。传感器节点作为物联网系统的基本保障,其能源的长期稳定供应是需要解决的关键问题之一。在难以进行电能接入的传感器节点,利用太阳能电池的高功率密度优势,并结合锂电等储能技术,是解决能源供给最有竞争力的技术之一。无机薄膜太阳能电池因轻薄、稳定性好以及弱光性能优异等特性,能够很好地服务于物联网传感器节点,满足其长时间工作
发光材料的应用领域涵盖了照明、显示、医疗、交通等各个方面,与人类的日常生活息息相关。不同的发光材料拥有不同的发光机理和发光特性,对应着各自的优势应用领域。因此,深刻理解材料的发光机理和发光特性,有利于找到其具有特别竞争力的应用领域。当材料具有强的电子-声子耦合效应时,光激发很容易引起晶格畸变,从而捕获光生电荷,形成高度限域的自限域激子(STE)。相比于自由激子发光,目前对于STE发光的机理研究、性质调控及应用探索都处于起步阶段,亟待深入研究。本课题以Cs2AgInCl6为研究对象,率先将STE概念引入到全