论文部分内容阅读
2-D(two-dimensional)系统的信息传播是在两个方向上进行的,按照两个方向上信息传播是离散还是连续,2-D系统有2-D离散系统,2-D连续系统和2-D连续-离散系统之分。2-D系统中的很多研究成果都是关于2-D离散系统的,2-D连续-离散系统由于系统复杂性,取得的成果相对较少,且在诸如线性重复过程、迭代学习控制、车辆排的控制以及水渠灌溉等很多实际工程领域都有着广泛的应用,因此受到了许多的关注。在实际问题中,可能会要求在不同的子系统中切换,切换规则的引入,使得系统的动力学行为变得更加复杂,因此2-D切换系统的研究成为新的热点。本文研究了几类2-D系统的稳定性,无源性分析和综合,所取得的研究成果如下:1.研究了2-D切换连续-离散系统的渐近稳定性。通过设计只与时间有关的状态依赖切换律,得到2-D切换连续-离散系统稳定的充分条件,并应用到以2-D连续-离散系统表示的切换重复过程上,得到了切换重复过程沿通道稳定的充分条件,由此讨论了切换重复过程的H∞性能,设计了状态反馈H∞控制器,使得闭环系统沿通道稳定,并满足扰动衰减水平。2.研究了2-D切换连续-离散系统的无源性。通过设计只与时间有关的状态依赖切换律,给出了系统无源的充分条件。分别考虑了2-D切换连续-离散系统存在外部扰动时的基于观测器的滤波器设计和一般形式的无源滤波器设计,使得闭环2-D切换连续-离散系统是无源的。3.研究了一类非线性2-D切换离散系统的无源性,提出了该类系统在三角形区域上的无源性概念,设计了斜割线上的状态依赖切换律,得到该类系统的无源性条件。当系统状态完全可测时,设计了非线性2-D切换离散系统的状态反馈控制器,使得闭环系统是无源的。给出了系统状态部分可测时线性2-D切换离散系统的输出反馈控制器,保证闭环系统的无源性。最后,从频域区间的稳定性判据出发,提出了2-D离散一般模型新的线性矩阵不等式(LMI)形式稳定性充分条件,利用频域划分的方法改进了得到的稳定性条件,减少了条件的保守性。4.研究了2-D连续-离散系统的有限时间稳定和有限时间有界问题。利用数学归纳法,建立了系统状态的迭代公式,得到系统有限时间稳定和有限时间有界的线性矩阵不等式(LMI)判别条件。当系统存在外部扰动时,设计了状态反馈控制器,实现了系统的有限时间镇定。每一部分研究内容最后都进行了数值仿真,来验证所得结论的有效性。