论文部分内容阅读
中国是世界上蔬菜产量最大的国家,部分蔬菜会在收获、储存和运输等过程中损失而成为蔬菜废弃物。该有机废弃物含水量高且有机物含量高,填埋处理会产生渗滤液而造成环境污染。厌氧消化是处理蔬菜废弃物的理想选择之一,可以实现蔬菜废弃物的减量化和能源化。采用全混式和固定床生物膜反应器组成的两相系统对蔬菜厌氧消化产沼气过程进行研究。在有机负荷1.3、1.7、2.1g VS/L/d和2.6g VS/L/d下运行,考察有机负荷对发酵过程稳定性和产气的影响。有机负荷增加至2.6g VS/L/d时,酸化反应器发酵液的总挥发性脂肪酸浓度和CODcr浓度分别维持在8500mg/L和20000mg/L左右,与前一阶段相比并没有随着有机负荷提高而提高,且VS浓度达到20g/L,这些结果表明该有机负荷下水解受到抑制。实验中引入甲烷反应器出水回流至酸化反应器来促进蔬菜水解。结果显示甲烷反应器出水回流能有效缓解挥发性脂肪酸的抑制并起到稀释和调节pH值作用,尤其是在高有机负荷下对酸化反应器中底物酸化和沼气产量有明显促进作用。实验还研究了回流比对两相蔬菜厌氧消化性能的影响,该系统在有机负荷1.7g VS/L/d的条件下增大回流比为0、0.6、1和1.4,使酸化反应器日产气量提高,同时pH值从约5.1上升至6.7。这说明甲烷反应器带有一定碱度的出水回流有助于酸化反应器创造一个适宜环境产沼气,同时酸化反应器中发酵液CODcr浓度减小是由于回流的稀释作用。本实验中在回流比0.6条件下可促进酸化过程,但需要注意的是一个比较大回流比1.4会导致酸化和甲烷反应器之间的传质加强,造成反应系统运行不稳定。为了提高两相厌氧系统运行稳定性,将系统的甲烷反应器有效体积为4L和7L配比,在回流比0.8和1.6条件下考察反应器运行情况。结果表明在有机负荷为2.6g VS/L/d下回流对蔬菜废弃物厌氧消化的性能有明显促进作用。有机负荷提高到3.0g VS/L/d后,没有回流的系统中酸化反应器VS浓度达到50g/L左右,出料中有机固体进入甲烷反应器而导致其酸化,最终整个发酵过程失败。酸化和甲烷反应器分别为3L/4L组成的系统且回流比1.6的甲烷反应器发酵液中TVFA/TIC比值增加至约0.5,这表明产甲烷化即将发生的酸化而使系统厌氧消化过程受到抑制。3L/7L组成的系统延长了甲烷化的水力停留时间而有助于挥发性脂肪酸转化,提高了系统的甲烷产生和有机物降解效率。蔬菜废弃物单相厌氧消化中添加餐厨垃圾使产气量和甲烷产率增加。对蔬菜废弃物的单相和两相厌氧消化之间的差异进行比较表明两相系统可在更高的有机负荷下稳定运行。