基于高次谐波的超快极紫外光源及氩原子单光子电离激发研究

来源 :中国科学院大学(中国科学院近代物理研究所) | 被引量 : 0次 | 上传用户:q912569130
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
极紫外光的单光子能量足以电离大部分原子分子的外层价电子,在原子分子光物理基础研究中具有重要的应用价值。目前最主要的极紫外光源,是同步辐射和自由电子激光这样的大科学装置,建造及运营维护成本极高。而超快强激光场中的高次谐波过程,可以在桌面化尺度,产生高度相干且脉冲时间超短的极紫外光,是近些年极紫外光源发展的重要趋势。本论文工作基于高次谐波的单色化,搭建了一套桌面化超快极紫外光源系统;并结合先进的反应显微成像谱仪,开展了惰性气体原子Ar的单光子电离激发实验,首次测量了多个电离伴线的光电子角分布不对称参数β。我们使用克尔透镜锁模,配合啁啾脉冲放大,得到脉冲长度约25 fs中心波长800 nm单脉冲能量高达3 mJ的红外驱动激光。使用充气的中空波导管产生高次谐波,比传统的气体喷流方法具有更高的转换效率。产生的高次谐波,采用非平面安装的光栅进行单色化,在保证高的反射及衍射效率的情况下,最大限度保持了高次谐波脉冲的飞秒时间特性。极紫外光子能量范围为20-90 eV,在40 eV附近能量选择分辨率约0.4 eV,单色化后的光子流强可达1010 photon/s。搭建了专门用于研究极紫外光与原子分子相互作用的反应显微成像谱仪。综合利用超音速气体靶、一维聚焦型飞行时间谱仪和大面积位置灵敏探测器,在保证高测量精度的情况下,实现了运动学完全测量。通过He原子的单电离实验,谱仪的可靠性得到了验证。在Ar原子的单光子电离激发实验中,观测到了 3p和3s光电离主线以及多个光电离伴线,并对每个伴线对应的离子激发态进行了指认。对实验中观测到的所有电离通道,都得到了光电子角分布不对称参数β。其中,3p主线的β参数值与文献中已发表的数据符合很好,进一步证明了实验设备及方法的可靠性。3s主线由于存在截面的库珀极小,导致在41.7eV和42.6eV两个光子能量处,实验计数率太低,无法得到β值。但是,其他三个能量点的结果与文献中仅有的两个已发表数据符合很好。对于电离激发伴线,我们首次测量了多个伴线在阈值能量附近的β值,提供了新的实验数据,对于深入理解电子关联效应具有重要的意义。对于观测到的两个能级近似简并同时都具有特殊角分布特性的电离激发通道,根据对β值的分析,获得了两个通道的相对比例,其与使用理论截面值给出的比例相符合,在一定程度上证明了该理论的正确性。
其他文献
基于解决石油依赖程度和降低碳排放的诉求,新能源电动汽车得到迅速发展,随着大容量/高能量密度的动力电池以及高压快充技术不断被运用到越来越多的车型中,由此带来的直接后果就是,超高电流引起的电池芯体短时间内热量的迅速聚集,安全性能显著下降,使用寿命大幅缩短,严重时会发生自燃、爆炸等安全事故。因此对电池散热系统进行研究具有重要意义。本文借助CFD仿真技术,建立了不同散热方案的仿真模型,对比分析证实了液冷板
世界经济快速发展,能源消耗量也在急剧飙升,保证经济增长的同时,尽可能多地降低能量消耗是亘古不变的发展之道。对交通运输领域而言,在保证交通工具驾驶功能以及行驶安全的前提下,尽可能减低整备质量是节约能源和减少尾气排放的一种行之有效的方法。泡沫铝夹层结构,由于其优异的力学性能和结构特点,在汽车结构件上有着广泛的应用潜能。考虑到汽车在服役期间,通常发生的交通事故有前后追尾、侧面碰撞、遭受道路飞石等冲击,这
航空发动机是集复杂化与精密化为一体的热力机械件。在发动机工作状态下,机匣受惯性力和外界气压影响,以及温差变化所产生的热载荷影响,是整个发动机装置的关键承载零部件。大尺寸轻合金环状壳体机匣件,加工繁杂,材料去除量大,周期长,加工过程所产生的切削热以及环境温度的变化,将导致生产的零件精度不达标。本文将机匣抽象为圆环件,对圆环件自身受热产生变形方面进行深入研究,通过理论、仿真和试验方法探究其热变形的变化
随着交通事故频发,政府制定的汽车安全性法规日趋严格,汽车碰撞安全已成为社会的热点关注问题。其中,耐撞性是评价汽车碰撞安全的重要指标。S形前纵梁作为一种典型的吸能梁结构,发生正面碰撞时,能吸收大部分碰撞能量,其变形形式直接影响汽车正面安全性能。因此,对S形前纵梁进行耐撞性优化设计,可以进一步提高汽车的碰撞安全性。S形前纵梁在碰撞过程中,受到轴向压力和弯矩的共同作用,变形形式复杂。同时,由于车身结构的
电动汽车作为能源危机背景下汽车转型的重要方向,经历了十几年的发展历程,各项技术都得到了很大突破,但是还有许多问题亟待解决;电动汽车上普遍使用锂电池作为动力电池,并且配备电池管理系统(BMS),目前车载BMS硬件计算资源和能力有限,数据存储能力有限,无法应用更高精度更加复杂的荷电状态(SOC)估算算法;随着移动无线通信技术(如4G、5G)的发展,数据传输延迟得到了很大的降低,传输容量增大,已经满足远
自动导引小车(Automated Guided Vehicle)作为移动机器人的一个重要分支,因其高效、智能等特点在工业领域得到广泛应用。定位导航是AGV的关键技术之一。即时定位与地图构建(Simultaneous Localization and Mapping,SLAM)技术是指机器人在移动过程中同时实现自身定位和增量地图创建,是目前AGV定位导航的主流方法。课题围绕激光SLAM开展研究工作,
闭孔泡沫铝作为一种多功能材料,具有高比强度、高比刚度,吸收能量能力强等优点,被广泛应用于军事、航空航天、高铁、船舶、汽车等领域。它作为汽车关键部件的填充材料,具有良好的安全防护特性和优异的轻量化效果,受到了科研人员的重视。为了更好地分析闭孔泡沫铝的力学性能和变形机理,本文围绕闭孔泡沫铝的三维模型建立方法、胞壁材料力学性能参数的反求、以及单轴压缩和压剪工况下的数值仿真分析展开了一系列研究工作:(1)
泊松比是表征材料变形量的重要参数,但是常规材料的泊松比值仅在[-1,0.5]之间。突破传统材料的泊松比范围限制,开发具有泊松比调控特性的超材料,对于航空航天、汽车、医疗、能源等领域具有重要意义。三角形和蜂窝点阵结构具有进行平面超材料结构设计的诸多优点,如完备的理论基础、结构简单且易于制备。但目前制备的这类超材料的泊松比范围仅在[-4,1]之间,其泊松比调控能力未充分被发掘。此外,工程中常用的曲面圆
p53作为重要的肿瘤抑制因子,几乎在所有的人类肿瘤中都出现功能缺失。目前已有许多p53的激活剂被开发成肿瘤治疗药物,但是由于激活p53对正常组织带来的安全问题限制了其治疗效果。MDM2和MDMX是p53关键的两个负调控蛋白,MDM2与MDMX形成异源二聚体负责p53最核心的调控机制。对于生理状态下MDM2/MDMX异二聚体在成体中对p53的调控作用鲜有研究。肿瘤细胞与周围的基质组织和浸润的免疫细胞
核能是一种安全、可大规模利用的清洁能源,发展核能对于维护国家主权、保护生态环境和促进科技进步等方面具有十分重要的作用。得益于铅铋合金(Lead-Bismuth Eutectic,LBE)传热性能好、沸点高和化学活性低等优点,铅冷快堆(Lead-cooled Fast Reactor,LFR)被遴选为第四代反应堆系统之一和加速器驱动嬗变研究装置(China initiative Accelerato