论文部分内容阅读
基于世界范围能源资源供给紧张的现状,以及我国风力发电和太阳能发电均具有地域性强、集中度高等特点,通过对相关理论观点的回顾和综述,介绍了风光储联合发电模式、功率预测方法。以及多目标决策理论的研究现状,提出对风、光、储能多模块机电功率预测研究、风光储联合发电调度管理、风光储联合发电综合效益评价的技术方法,寻求技术经济效益最优的解决策略,为风光储联合发电模式发展作出有益探索。本文主要研究成果和创新如下:(1)建立了基于模式分解(EMD)和粒子群优化支持向量机(PSO-SVM)的风电输出功率预测模型。风电功率的输出为非平稳时间序列,采用传统的回归算法、神经网络等预测模型往往得到的结果精度不高。针对这种非线性、非平稳的时间序列,首先,使用经验模式分解(EMD)将风电机组输出功率分解为多组具有不同尺度的时间序列;然后,分别对每组信号使用支持向量机(SVM)进行预测。(2)建立了基于聚类分析和熵权预测模型的光伏发电输出功率组合预测方法。对于光伏发电,由于其输出功率是非线性时间序列,其随机波动较强,而且具有明显的规律日重复性。针对这一特征,本文提出首先使用模糊聚类的方法,对光伏发电矩阵的输出功率进行日聚类,得到多组相似日的样本集合。然后使用基于熵权组合预测模型的预测方法对各组相似日进行训练。这种预测方法建立于对光伏发电矩阵的输出功率记性准确日聚类的基础之上,能够更好地捕捉不同气候条件下输出功率的规律特性,降低了预测模型的结构风险。(3)建立了风光储联合发电多目标跟踪计划出力调度模型。由于风光出力具有较强的随机性和模糊性,对风光储联合发电系统中出力调度优化是一种不确定性规划,本文从运行目标和经济性两个方面出发,建立了基于不确定规划的风光储联合发电多目标出力调度模型,结合蒙特卡罗模拟和灰色粒子群算法进行求解。最后,选取张北国家风光储输示范工程作为分析对象,分别建立了出力跟踪计划出力调度模型和计及经济性的多目标跟踪计划出力调度模型。在单目标调度模型中,提出了包含储能系统充放电功率控制系数和风光预测状态控制系数的出力系统控制策略,结果表明通过变化储能系统充放电控制系数不仅能够降低对储能系统的要求,还能将误差控制在合格范围内。在多目标调度模型中,通过对比单目标决策与多目标决策的结果可以发现,多目标优化调度模型能够在最大程度跟踪计划出力的基础上降低经济成本,实现经济利益的最大化。(4)建立了基于多维度效益的风光储联合发电综合效益评价模型。首先依据指标构建原则,开展多维度效益指标识别工作,确定了示范效益、电网效益、经济效益、社会效益四个层面的识别方向,构建了多维度多层级的风光储联合发电综合效益评价体系。最后,结合本文提出的基于多维度效益的风光储联合发电综合效益评价模型,利用张北国家风光储输示范工程项目数据,分别从实际数据和规划数据两个角度开展了测算工作,测算结果显示,张北国家风光储输示范工程综合效益达到了规划预期水平,整体水平良好,随着张北国家风光储输示范工程二期的陆续建设,风光储联合发电系统将进一步发展,在不断提高经济性的同时,增强系统友好型,不断促进新能源发电的发电比例,促进能源结构的不断优化发展。本文对风光储联合发电调度管理工作具有一定的参考作用。(5)对风光储联合发电系统的运行管理策略和产业发展政策建议进行了研究。从风光储系统并网与孤岛运行的角度介绍了风光储系统的运行管理策略,分析风光储联合发电产业的现存问题,结合能源互联网的发展理念,提出能源互联网下风光储联合发电系统的典型运行模式。最后,结合产业及政策要求,为风光储联合发电系统的未来发展提出了相关的政策建议。