拓扑N=2超共形代数和Hom-Lie代数

来源 :东南大学 | 被引量 : 0次 | 上传用户:tyftyf123
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Yang-Baxter方程是数学和数学物理中一类重要的方程.Yang-Baxter方程与Lie双代数密切相关,具体地说,每个上边缘三角Lie双代数都对应着经典Yang-Baxter方程的一个解.Hom-Lie代数作为Lie代数的自然形变,其上的Hom-Lie双代数结构与Hom-Yang-Baxter方程的解有着密切关系.   量子化Lie代数的关键一步是确定Lie代数上的Lie双代数结构,本文研究了无中心拓扑N=2超共形代数的Lie超双代数结构,证明了其上的所有Lie超双代数都是上边缘三角Lie超双代数,从而刻画了经典Yang-Baxter方程相应的解.   Witt代数和Virasoro代数是非常重要的两类无限维Lie代数.与它们相关的Hom-Lie代数则为Hom-Lie代数中重要的代数类.本文研究了一类与Witt代数以及Virasoro代数相关的Hom-Lie代数的结构.我们确定了q-形变Virasoro代数的自同构群,给出了两个Witt型Hom-Lie代数同构的充分必要条件,并计算了Witt型Ham-Lie代数的2-Hom-上循环和q-形变Witt超代数的2-Hom-Leibniz-上循环,
其他文献
近年来由于现代基因芯片测试技术和多电极实验的发展以及计算新方法的不断涌现,我们能得到大量的高通量数据,如何准确可靠地从这些实验数据中发现数据之间潜在的网络结构(基因
随着科技的进步,20世纪70年代初引入的奇异系统理论被广泛地应用于实际工程、社会科学、人类科学、生物、网络等领域中.由于其应用背景和数学意义,奇异系统的研究已经引起了国
新发传染病(Emerging Infectious Diseases),是指严重影响社会稳定,对人类健康构成重大威胁,需要对其采取紧急处理的疾病,包括鼠疫、非典、埃博拉等。每年都会有成千上万的人死于各
排队系统由顾客和服务台双方构成。以往的排队大都是从影响顾客的服务上去研究的,自然这样有利于服务系统的完善。而本文是研究顾客受到阻塞的影响的排队系统。在排队系统中考
生态系统的持久性、周期解和概周期解的存在性及稳定性、全局吸引性等问题是生态数学理论中的一个重要研究内容.本篇硕士论文主要应用常微分方程稳定性理论中的Lyapunov函数法
组合数学是数学界中一门有趣而有用的分支,其内容丰富、应用广泛、发展迅速.组合数学研究的主要对象是离散构形问题,如有趣的幻方问题.图论是研究离散对象的骨干分支,因而图
成型加工过程中聚合物及其复合体系的内部结构动态变化以及聚集态结构演化发展是决定制品最终性能的关键因素。由于采用传统的数值模拟只能预测宏观尺度的一些参数信息,无法
自Banach压缩定理被提出以来,已经有大量学者在此基础上对其条件和结论进行了研究,而度量空间中广义压缩映像不动点的存在性问题也备受关注,本文将其压缩条件进行了适当的放宽
本文研究了在Fourier热传导定律或Gurtin-Pipkin热传导定律下几类热弹耦合梁方程组系统.  考虑了齐次边界条件和非齐次边界条件及初始条件下各类系统整体解的存在唯一性和
本文研究以下两类非线性波动方程  utt-βuxx+γut+α1u+α3u3=0 (Ⅰ)  utt-βuxx+γut+α1u+α3u3+α5u5=0 (Ⅱ)  有界行波解的存在性