航天器交会与姿态控制系统的有界线性反馈方法

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:dawulitao
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
航天器是人类探索宇宙,执行空间任务的载体。航天器动力学与控制的研究有助于航天器在空间中平稳可靠的运行,在航天技术发展中起到关键的作用。其中,航天器交会的成功是许多航天任务的先决条件,姿态控制系统直接影响着航天器在轨运行的稳定。随着空间任务的多样化,航天器面临极端的空间环境、日益复杂的结构特性、输入受限、时滞以及时变特征等问题。对这些问题认识的不足会导致航天器控制性能下降或失效。因此,基于这些问题的航天器交会与姿态控制的研究得到越来越多的关注。本文针对航天器系统中输入受限时变等特性,研究输入受限与时滞的航天器交会的全局镇定问题以及输入受限与时变的航天器姿态控制问题,并研究一类基于有界控制的线性周期中立稳定系统的全局镇定问题。主要内容包括:1.针对输入受限与时滞的圆形轨道航天器交会控制问题,将航天器相对运动方程(C-W方程)分解为中立稳定的线性系统级联的形式,提出了有界(和/或)时滞线性状态反馈控制器,保证了闭环系统的全局稳定性,其中在无时滞的情况下,得到了最优的线性反馈增益。2.研究了一类基于有界控制的线性周期系统的全局镇定问题,其中开环系统具有中立稳定的性质。针对输入受限离散周期系统,利用与开环系统相关的Lyapunov周期矩阵的解,提出了一簇全局镇定的状态反馈控制律和输出反馈控制律。构造了显式的Lyapunov函数证明了闭环系统的全局稳定性,并应用于航天器磁力矩姿态控制系统。针对输入受限连续周期系统,设计了显式的基于函数观测器的输出反馈控制律,保证了闭环系统的全局稳定性。3.研究了输入受限偏置动量航天器的三轴磁力矩姿态镇定问题。首先,基于Jordan标准型的方法,给出了线性化姿态开环系统是中立稳定(Lyapunov稳定)的一个充分必要条件。改进了通过分析特征方程的经典判据,由于开环系统在进行Laplace变换后,特征方程中在虚轴上重极点被强制的忽略。然后,给出了与开环系统相关的Lyapunov矩阵方程的显式正定解,结合所提出的基于有界控制的周期系统理论,构造了显式的周期有界线性状态反馈和输出反馈磁力矩姿态镇定控制器,保证了闭环系统的全局稳定性。4.研究了基于有界线性反馈的轴对称航天器姿态镇定问题。分析了线性化姿态开环系统是ANCBCs的而不是中立稳定的,利用新型的状态变换,提出了有界线性反馈控制器。构造了二次型加积分的Lyapunov函数,证明了当反馈增益中的参数满足一定的显式条件时,该线性控制器能保证闭环系统的全局渐近稳定性。通过求解极小极大优化问题,得到了欠驱动姿态控制系统的全局最优线性反馈增益,使得闭环系统的收敛速率最大。针对输入受限的惯量对称航天器姿态镇定问题,提出了有界线性状态反馈全局姿态镇定控制器。同样的得到了最优的线性反馈增益。
其他文献
锂离子电池的广泛应用使锂资源的需求量急剧增长,资源的短缺以及成本的上涨严重制约了锂离子电池市场的发展。因此,近十年来电化学领域的重要探索方向集中在发展资源丰富,成本低廉,使用安全的新一代可充电电池。与锂资源相比,钠/镁储量丰富,安全高效,有望成为替代锂离子电池的新一代储能装置。为了规避电解液使用过程中易燃易爆的问题,以固态电解质替代电解液制备全固态电池成为电化学领域新的构想。近年来,NASICON
空间机器人在未来太空探索活动中扮演着至关重要的角色,它能够代替宇航员执行各种空间任务,成为了当前航天领域的研究热点。其中,视觉测量技术是其成功开展在轨服务的关键,它能够提供目标航天器的位姿参数,从而提高在轨操作的安全性。本文将星箭对接环选作在轨航天器的通用视觉特征,详细分析了空间机器人接近阶段的全局视觉测量方案以及捕获阶段的手眼视觉测量方案。太空环境下光照条件较差,MLI保温隔热层的高反射性极易产
切换系统一般指代一类由多个子系统及决定子系统如何切换的切换信号所组成的混杂系统。这种独特的系统结构赋予了切换系统对自身具有多模态性质及带有多控制器的物理对象进行建模的能力,为解决复杂系统的分析与控制综合问题提供了简单有效的研究方法。切换系统理论在航空航天、汽车工业、智能电网、化学工业以及疾病传播控制等多个领域中得到了广泛的应用。然而,目前对于切换系统的理论研究仍然存在大量的不足。现有的针对切换系统
气相燃烧过程包含复杂的反应网络和化学反应类型。随着计算能力的提高及高精度电子结构方法快速发展,理论模拟手段逐渐被广泛用于燃烧基元反应动力学研究,这其中包括利用高精度电子结构方法构建反应体系势能面,以及在构建的势能面基础上结合相关统计理论进行包含温度/压力的化学反应速率常数计算,利用动力学方法研究反应的微观动态行为等。一方面,对于只涉及单一电子态(通常为基态)的电子绝热反应过程,经典过渡态理论(TS
偏高岭土(MK)是高岭石类粘土在500-800℃下煅烧1-3 h后,经脱羟基衍变而成的一种活性材料,适当研磨后具备超高的比表面积和优异的活性。MK在制备过程中只释放水蒸气,对环境无污染,且能源消耗低,是一种低碳环保的绿色活性材料。超高性能混凝土(UHPC)是近些年新兴的一种极具创造性的水泥基材料,具有超高的力学和耐久性能。但是UHPC存在制备成本高和水泥利用率低等缺点,使其在工程中的应用受到一定程
为了解复杂地形条件下天顶对流层延迟(ZTD)特性并研究其精细化建模,采用四川省56个CORS站的数据,解算其高精度ZTD并对3种不同ZTD模型的精度进行评估,分析了ZTD时空分布特性受地形条件、季节因素的影响。基于ERA-Interim再分析数据建立了区域ZTD格网模型及其精化方法。实验结果表明:1)ZTD随地形分布的变化幅度大,模型的偏差分布也呈现出显著的不一致性,其中Saastamonien模
实际沥青路面中水分扩散行为的普遍性、长期性和隐蔽性使得服役于自然环境中的沥青路面材料不可避免的受到水分扩散侵蚀作用,由此造成的沥青混合料力学性能劣化和耐久性衰减问题不可忽略。水分通过扩散作用进入混合料内部后,与组分材料长期作用造成不同尺度水损伤行为。纳观尺度下水-沥青-集料分子相互作用,改变沥青-集料分子间非键势能,引起体系纳观结构变异;微观尺度下含水纳观结构演化造成胶浆-集料界面及体相流变性质劣
动静压气浮轴承以其摩擦小、精度高、无污染等优点,被广泛应用于高速/高精度加工领域。而以动静压气浮轴承为支撑系统的高速/高精度动静压气浮主轴作为超精密机床的核心零部件,是超精密机床实现超高精度加工的根本基础。然而,动静压气浮轴承还存在刚度较低,承载能力不高和容易失稳等问题,这些问题制约了动静压气浮主轴在高效、稳定、可控和工业化的超精密加工领域的应用。因此,围绕动静压气浮主轴动静态性能的理论分析及动静
基于掺杂氧化镁周期性极化铌酸锂(periodically poled lithium niobate crystal doped Mg O,PPMgLN)晶体的非线性频率变换的激光器能够满足军事光电对抗对于轻量化、结构紧凑的高峰值功率3~5μm中红外固体相干光源的迫切需求,但目前受晶体尺寸、损伤阈值以及晶体对长波长中红外激光吸收等因素的限制,PPMgLN中红外激光器的体积和峰值功率分别有待于缩小和
钠离子电池,因钠资源的储量丰富,分布广泛和成本低廉,已经成为极具潜力的下一代廉价高效储能电池体系。在众多的钠离子电池负极材料中,转化-合金型负极材料由于具有非常高的比容量,是高性能钠离子电池的理想负极材料。然而,因其嵌脱钠过程中发生的较大体积变化,极大降低了电池的循环稳定性。同时,钠离子较大的半径,使得该类材料表现出迟缓的电化学反应动力学,导致电池倍率性能变差。本文针对转化-合金型负极存在的缺点,