基于液晶填充光子晶体光纤调控光纤随机激光的研究

来源 :合肥工业大学 | 被引量 : 0次 | 上传用户:valerianforever
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
自英国巴斯大学Russell P.S.J.课题组成功制备了第一根光子晶体光纤以来,光子晶体光纤迎来了蓬勃快速的发展,其中液晶填充光子晶体光纤作为填充型光子晶体光纤发展中的一个分支,呈现出广泛的应用。液晶填充光子晶体光纤结合了液晶优异的光学性能和光子晶体光纤特殊的微结构,使得液晶填充光子晶体光纤可以设计成各种光学器件,如滤波器、偏振分光器、调制器和热光开关等光学器件。其中液晶填充光子晶体光纤制备的热光开关应用在通信窗口O波段、C波段将具有重要意义。在本文中我们将E7液晶全填充到光子晶体光纤中,制成一种可以同时控制两个通信窗口的热光开关,并利用液晶填充光子晶体光纤的热光开关特性调控掺铒光纤随机激光。论文主要研究内容如下:(1)液晶填充光子晶体光纤的温度特性。向光子晶体光纤填充E7液晶,制成一种紧凑型多波段热光开关和温度传感器。在液晶清亮点温度附近,长为8 mm和10 mm的液晶填充光子晶体光纤均形成了多波段热光开关。当温度小于液晶清亮点温度时,液晶填充光子晶体光纤的透射光谱会随着温度的升高出现红移,且有着非线性的温度传感特性。当温度高于液晶清亮点温度时,液晶填充光子晶体的透射光谱会随着温度的升高出现蓝移,且具有高的线性温度灵敏度。(2)掺铒光纤与单模光纤杂化系统随机激光阈值及强度与泵浦能量的关系。用980 nm光纤激光器泵浦10 m掺铒光纤会产生光纤随机激光。单模光纤中弱的瑞利散射可以为掺铒光纤随机激光提供随机反馈。不同长度单模光纤会积累不同程度的反馈进而影响10 m掺铒光纤前向和后向输出激光性质。10 m掺铒光纤在25 km、30 km和50 km单模反馈下,前向和后向输出随机激光阈值均会降低且输出随机激光强度会增强。(3)液晶填充光子晶体光纤对掺铒光纤随机激光强度的调控。将8 mm液晶填充光子晶体光纤分别接在掺铒光纤前向和后向输出端口,并利用8 mm液晶填充光子晶体光纤的热光开光性能调控掺铒光纤前向和后向输出随机激光强度。8 mm液晶填充光子晶体光纤对单独10 m掺铒光纤及10 m掺铒光纤在25 km、30 km和50km单模反馈下的前向和后向输出随机激光强度的调控范围都在30 d Bm附近。
其他文献
近些年来,体全息光栅作为全息光波导的重要耦合元件,在头戴式显示和近眼显示领域备受关注。全息光波导通过体全息光栅调控光束的传播方向实现转折成像,使整个显示系统实现简洁化、小型化。因此,高衍射效率的体全息光栅的制备尤为重要。体全息光栅传统记录方法是采用全息干涉法,具有光路复杂、对环境要求高、干涉条纹强度不可控性的缺点。本文主要针对上述问题展开分析和研究。衍射光学元件(Diffractive optic
近年来,具有抗菌活性的薄膜和通过颜色响应监测食物新鲜度的薄膜越来越受到人们的关注。然而,仍然需要开发多功能的抗菌剂和比色剂。本文通过在聚乙烯醇(PVA)基体中掺入三氧化钨(WO3)纳米棒,开发了一种具有近红外(NIR808 nm)光热抗菌活性和新鲜度监测能力的新型复合膜。利用一步水热法,通过pH的调控制备出纯度较高、形貌较好的棒状WO3纳米棒,长度约为2μm,直径大约在20-80 nm。该纳米棒对
关节式坐标测量机作为一种非正交式坐标测量仪器,广泛应用于汽车制造、飞机装配、模具制造等领域。关节式坐标测量机采用串联式结构,其轴系的角度误差对仪器的测量精度具有显著影响。为进一步提高其测量精度,本文提出一种新型关节式坐标测量机运动学模型,并自主研发一套数据采集与处理软件系统,本论文的主要研究内容和创新点如下:1、提出了一种新型关节式坐标测量机运动学模型。通过仿真分析倾斜误差运动对整机测量精度的影响
生物标记物的准确和快速医学诊断在疾病预防、治疗和预后中起着关键作用。呼出气体中的挥发性有机化合物已被认为与许多疾病的发展过程密切相关,如癌症、糖尿病等。作为一种典型的呼吸挥发性有机物,呼出气中的一氧化氮(Nitric oxide,NO)被认为是一些慢性呼吸系统疾病(如肺气肿、支气管炎和哮喘)的预后生物标志物。研究表明,呼吸道上皮细胞中诱导型一氧化氮合酶的激活,导致呼吸气体中NO水平升高。NO的相对
外界异物颗粒进入滚动轴承内部是工程实践中普遍存在的一种现象,由于外界污染物进入滚动轴承的润滑系统而导致轴承过早失效已成为轴承失效的主要原因,在一些工作环境恶劣的特殊工程设备上,轴承的更换与维修成本较为高昂。所以探究滚动轴承在受到外界异物颗粒污染的情况下的磨损机理问题是十分有必要的。本文模拟外界沙尘颗粒进入推力球轴承内部的情况,结合多种观察和分析方式,对轴承的滚道和滚珠的磨损机理问题展开深入研究,并
谐振冲击式压电马达利用自身固有振动模态合成非对称周期振动,弥补传统冲击式压电马达的缺陷,实现功率驱动能力的大幅度提升。然而,要想将谐振马达具有特定频率和振幅比的几种固有振动模态匹配起来,却是十分困难的。本文设计、分析、测试了一种具有匹配振动模态的高性能谐振式压电惯性驱动直线马达,采用两个压电堆激励的柔性放大机构连接三个惯性质量块构成非对称结构,通过匹配反相、同相两种纵向固有振动模态合成近似锯齿波振
工程结构设计的目的就是利用现有的技术条件,以最为经济的方法使得结构在安全性、适用性和耐久性之间达到合理的平衡,在满足各种预期功能的同时产生可观的经济效益。结构可靠性分析采用不确定性力学模型,以概率度量的形式合理地评估结构在不确定因素影响下的安全性能。其中,抽样方法因其简单性和实用性在可靠性评估中广泛使用。然而,它总是需要大量的样本来保证计算精度。本文以传统的抽样方法为基础,对结构可靠性分析方法进行
随着工业4.0对制造质量要求的提高和技术的变革,在精密几何量测量领域对现代光电传感技术提出了新的挑战。其中,光谱共焦位移测量具有高精度、抗干扰、无机械轴向扫描的特点而逐渐成为新型位移传感测量的代表方向。为了实现深度识别能力,该方法需要校准波长与位移的关系,然后从反射光信号中提取样品表面的峰值波长,通过色散关系计算出相应的位移或高度。因此研究光谱共焦位移测量系统的本质原理以及信号处理关键技术具有重要
脑深部电刺激(Deep-brain stimulation,DBS)已被证实是一种有效的治疗手段,可减轻帕金森病和肌张力障碍。胸部电池供电的传统DBS会给人体组织带来不适感,还会受到电池尺寸和寿命的限制。为了给具有多种电压源的可植入医疗设备供电,并使其与皮肤外部单元进行通信,短距离无线能量和数据传输是一种可行的方式。研究表明,电荷控制刺激利用电容器组将电荷转移到组织中,既高效又安全,适用于DBS。
微透镜阵列作为一种重要的微光学元件,被广泛应用于显示、成像、传输、测绘等多个方面。微透镜阵列的制造技术成为国内外研究者们关注的热点。目前,已经有许多行之有效的微透镜阵列制造技术被提出,不同制造技术适用于不同的材料以及应用场景。本文基于聚氯乙烯(Polyvinyl chloride,PVC)凝胶材料独特的电致形变特性和优异的光电性能,提出了一种基于电场诱导成型制备PVC凝胶微透镜阵列制造方法。在PV