【摘 要】
:
在现阶段空空攻防战中,末制导律阶段由于其作为弹目最终交汇条件的判断依据,因此在控制领域中收到广泛关注。现如今,基于末制导律的设计方法多采用传统的比例制导律或其变种,其在理想情况下效果尚可,但在现如今目标机动方式多变、环境存在噪声的末制导场景下,其制导性能较差,因此新型制导律的研发与设计成为了当今的研究热点。针对于传统比例制导律中的导航比系数为一定值,而不能随着弹目当前所处状态的变化而令制导导弹采取
论文部分内容阅读
在现阶段空空攻防战中,末制导律阶段由于其作为弹目最终交汇条件的判断依据,因此在控制领域中收到广泛关注。现如今,基于末制导律的设计方法多采用传统的比例制导律或其变种,其在理想情况下效果尚可,但在现如今目标机动方式多变、环境存在噪声的末制导场景下,其制导性能较差,因此新型制导律的研发与设计成为了当今的研究热点。针对于传统比例制导律中的导航比系数为一定值,而不能随着弹目当前所处状态的变化而令制导导弹采取相应的导航比,即无法自适应调整各个时刻、各个状态下的比例系数,来增加末制导的灵活性这一缺陷,众多研究者转向研究可变系数的制导律设计方法,并结合发展迅速的机器学习技术和深度学习技术,尤其是针对长序列交互问题的强化学习技术给出了一系列的智能制导律设计方法。但由于相关技术本身的收敛效率低下,导致不能够有效应用于末制导拦截场景中或制导精度较差。因此,一种高效率地、能够敏感捕捉当前状态下所执行策略的价值的强化学习技术是现阶段末制导律设计方法是关键的创新点和突破点。本文集中于基于强化学习的末制导律设计方法性能较差的问题,通过多维度、全方面地总结并应用两种基于回溯思想的高效强化学习算法设计自适应的末制导律,实现制导性能和制导精度的提升。本文首先针对末制导问题进行马尔科夫决策过程的设计与高度贴合真实战场的仿真模型建模;其次,本文将利用两种高效的强化学习算法,即基于回溯思想的高效Q-learning自适应导航比末制导律设计方法与基于回溯思想的EBDQN反向更新高效自适应导航比末制导律设计方法,将其与现有的强化学习方法以及传统领域的经典方法和高适应性的优秀算法进行对比,通过多维度的实验全面地证明本文应用的两种方法在脱靶量、稳定性、抗干扰能力等多个方面相较于常见的强化学习方法以及传统方法有着大幅的提升,体现了其高效性和在真实战场下的应用价值,同时也可以为相关领域的研究人员在设计新型制导律时提供一定的启示作用。
其他文献
冲压发动机自发明以来被世界各国广泛运用到超声速领域,具有比冲高、结构简单,经济性高等优点。冲压发动机在世界各国的国防军事领域都有着举足轻重的地位,尤其是欧美等军事强国一直在致力于开展冲压发动机的技术研究。随着冲压发动机工作范围拓宽、飞行距离更远等需求发生改变,仅考虑燃油可调单一变量控制的冲压发动机已经无法适应新环境和新的作战需求。本文针对固定几何结构冲压发动机面临的问题,考虑引入进排气可调的结构,
同步定位与地图构建(Simultaneous Localization and Mapping,SLAM)是机器人领域的重要研究问题,实现了机器人搭载相机和激光雷达等传感器在未知环境中对自身定位同时构建地图的任务。近年来,随着增强现实和自动驾驶等应用的兴起,视觉SLAM(Visual SLAM)研究受到了广泛的关注。VSLAM以图像作为主要感知信息源,通过多视图几何理论估计相机位姿和构建3D场景。
在医学诊断中计算机断层扫描技术(CT)是一种重要的技术手段,但是如果病人的身体中含有金属物质例如人造髋关节,脊柱植入物等,会导致扫描到的CT图像中产生明暗相间的金属伪影,掩盖人体器官组织,从而影响医生对于病情的判断。因此研究CT图像中的金属伪影去除算法具有重要的实际意义。因为传统去除金属伪影的算法在临床应用中效果并不好,要么计算时间较长,要么伪影去除不彻底。而近年来,在计算机视觉领域中,深度学习逐
随着信息技术水平的提升和现代工业的飞速发展,机械设备逐渐朝着集成化、电气化和自动化的发展方向迈进,其设备结构也越来越精细化和复杂化。机械旋转部件作为机械设备中的关键部件,一旦发生故障将会导致整个设备无法运转,轻则增加停机时间,重则引起大量经济损失甚至人员伤亡。因此,对其开展状态检测和故障诊断技术研究,可以维护机械设备的工业生产安全,具有重要的应用价值和潜在的经济效益。目前,机械旋转部件故障诊断工作
主动跟踪系统能够主动地、有目的地调整相机参数实现目标跟踪,在大范围智能监控、大尺度移动目标跟踪领域应用广泛,如何获得目标参数,在具体应用场景中实现优化控制仍是一大难点。利用科技手段辅助体育训练正成为我国体育科研工作的热点和趋势,尤其冬季体育项目,亟需发挥科技力量提升训练质量,实现跨越式发展。短道速滑是典型的滑行技术与比赛战术高度结合的竞技项目,对训练或比赛全过程视频记录是进行训练质量评估和比赛策略
垃圾回收与重新处理,始终是人类社会一个不可忽略的问题。尤其是进入21世纪以来,人类生产力飞速提升的同时,垃圾数量迅速增长。妥善的处理垃圾,可以高效的利用资源,减少污染,甚至再次创造效益。而且垃圾处理工作环境一般比较恶劣,有时候运送来的垃圾中掺杂一些的玻璃废渣,废旧电池等,这会使垃圾分拣工作者有一定受伤的风险。因此,建立全自动的智能垃圾分拣系统就显得十分重要。本文设计了一套智能垃圾自动分拣系统,重点
数控机床和基础制造装备作为装备制造业的“工作母机”,是“中国制造2025”十大战略必争领域之一。主轴系统作为数控机床的“心脏”,其回转精度与健康状态直接影响数控机床的产品质量及加工效率,同时由于主轴系统结构复杂且易受生产环境的干扰,导致加工精度难以保证且故障频发,不仅造成巨大经济损失同时威胁人身安全。因此,如何保证数控机床的回转精度及高稳定性是亟需解决的问题。针对以上问题,本文开展数控机床主轴回转
高光谱遥感图像(Hyperspectral Image,HSI)中的对地物分类问题是高光谱遥感图像处理领域的重要课题之一。在高光谱图像分类问题中,训练样本的标记是一件费时费力的工作,而较少的训练样本与高光谱图像较高的维度易造成“休斯效应”。对此,本文在高光谱图像小样本的情况下,从数据扩充以及降维的两个角度提出了适合该情况的两种算法,主要研究工作和创新思路如下:(1)提出了适合高光谱图像小样本条件下
移动通信技术追求的一个技术指标是更快的数据传输速率。但目前的蜂窝架构网络却可能对此施加限制。于是一种新的被称为Cell-Free Massive MIMO或简称为CF的网络概念被提出。与此同时,随着移动终端设备计算能力的大大增强,一些如VR等的计算密集型任务逐渐需要由被移动设备完成。但用户往往希望这些任务能够以低时延被完成,从而为自身带来良好体验。而设备的便携性又会限制其计算能力,使得上述目标很难
在临床医学中,使用计算机断层图像(Computed Tomography,CT)进行辅助诊断与治疗已非常常见,通过计算机断层图像技术获得患者的身体信息可帮助医生快速,准确的找出患者患病区域与存在的问题,尽快安排治疗方案,帮助患者早日摆脱病魔的困扰。随着计算机技术与人工智能技术的发展,通过计算机对医学图像进行处理,帮助医师快速准确的检测患者病因已获得多方关注,其中,为保证后续诊断的正确性,应当将计算