空间飞行器有限/固定时间稳定滑模控制

来源 :西安电子科技大学 | 被引量 : 1次 | 上传用户:zhaoshuang1989
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着科学技术的不断进步和人类对外太空的不懈探索,空间飞行器的飞行任务也变得日益复杂和多样化。姿态控制是空间飞行器完成各种空间任务的前提和保障。空间飞行器在执行空间飞行任务时,不仅要考虑模型不确定性对控制特性的影响,同时还要考虑外部干扰的影响。此外,空间飞行器动力学模型的高度非线性,也是姿态控制器设计时面临的一个重要挑战。近年来,由于空间飞行器结构及飞行任务变得日益复杂,为了更加圆满地完成外太空探索任务,空间飞行器姿态控制对收敛速度、控制精度及鲁棒性也提出了更高要求。本文针对不确定刚体空间飞行器的姿态控制问题,提出以下三种不同的有限时间/固定时间姿态跟踪控制策略。主要内容为:(1)针对不确定空间飞行器快速高精度轨迹跟踪的需求,发展了一种简单的非奇异滑模姿态跟踪控制方案,实现了姿态跟踪误差收敛到唯一的平衡点,给出了严格的理论分析。该控制方案对模型不确定性与外部干扰具有强鲁棒性,可以获得比现有有限时间姿态跟踪控制更快的收敛速度、更高的控制精度。(2)针对不确定空间飞行器非奇异滑模有限时间稳定姿态跟踪控制的收敛时间依赖系统初始值的问题,提出了不确定空间飞行器固定时间姿态跟踪控制策略,该控制策略可以保证系统状态收敛时间的上界不依赖系统状态初始值,即收敛时间的上界为一个常数值。与传统的不确定空间飞行器有限时间滑模姿态跟踪控制相比,该控制方案能够获得更快的收敛速度,且系统状态可以收敛到平衡点,而不是平衡点的一个小邻域内。(3)针对所提出的不确定空间飞行器固定时间控制的收敛时间不能精确表达的弱点,并考虑驱动器部分失效的影响,提出了一个新的固定时间滑模面,形成了不确定空间飞行器固定时间容错控制策略。所提出的固定时间容错控制系统的收敛时间可以明晰地显式表达,更方便有效地刻画系统的控制品质。应用李雅普诺夫稳定性理论对本文所提出的三种姿态跟踪控制闭环系统进行了稳定性证明。大量的空间飞行器姿态跟踪数值仿真验证了所提出方法的有效性和优越性。
其他文献
近几年系统的维修建模得到了研究者的极大关注。研究的系统主要分为单部件系统,两部件系统和多部件系统。可修模型的最优替换策略主要有基于系统的工作时间或系统的失效次数的单变量策略以及基于工作时间和失效次数的二元策略。系统的退化过程一般用几何过程描述,即用几何过程描述系统的连续工作时间和修理时间。本文引入扩展的几何过程描述系统连续的工作时间和修理时间,克服了几何过程的严格单调的缺点。考虑了修理工在系统工作
近年来,随着激光技术以及光场调控技术快速发展,各种具有新颖特性的有形电磁波束及结构光束受到了研究人员的广泛关注,本文以高阶时域有限差分方法FDTD(2,4)为基础,重点研究了FDTD算法中有形波束的重构。在传统FDTD方法的基础上使用四阶中心差分,对旋度算符中的空间一阶偏导数进行近似,获得了改善的数值色散以及网格各向异性特性。在此基础上,实现了高阶FDTD中基模高斯波束、高阶贝塞尔波束的重构,研究
碳纳米管(CNT)具有高强度、高刚度、低密度和高横纵比等优异的力学性能,被认为是一种具有广阔应用前景的复合材料增强体。功能梯度材料(FGM)由于其组分含量在一定的空间方向上是连续变化的,其力学特性在空间上也是连续变化的。为了进一步提高CNT增强体对复合材料宏观力学性能的增强效果,功能梯度分布形式被应用到CNT增强复合材料中。功能梯度CNT增强复合材料(FG-CNTRC)结构通常以梁、板或壳的形式存
两块可分凸优化问题在科学与工程中有很多重要应用,乘子交替方向法(ADMM)和Peaceman-Rachford分裂方法(PRSM)是求解该类问题的经典算法.PRSM的收敛性仅在目标函数的凸性下无法保证,但是由于进行了两次乘子更新,PRSM的数值效果优于ADMM.众所周知,传统ADMM和PRSM均以增广拉格朗日函数为效益函数,当子问题求解较为困难时,线性化技术被广泛使用.在增广拉格朗日函数的基础上,
越来越多的光学应用技术涉及到粒子的光散射特性计算与分析。针对不同的粒子,研究者提出并发展了各种光散射理论和计算方法。不同的理论模型和计算方法具有不同的适用范围,目前仍面临的挑战之一是大尺寸非球形粒子的光散射计算问题。对于形态复杂且尺寸远大于入射光波长的粒子,现有的解析理论(如米理论、广义米理论、德拜级数展开)和数值算法(如离散偶极子近似、时域有限差分、T矩阵)不再适用。而几何光学近似(GOA)方法
复杂系统广泛存在于现实世界中,是21世纪的重点研究课题之一,具有重要的实际应用背景和理论研究意义。通过将复杂系统看作是由系统中的多个个体(节点)以及个体间关系所组成的网络系统,复杂网络成为了描述和理解复杂系统的重要工具和方法。目前关于复杂网络的研究存在于多个领域,如数学,物理学,计算机科学,生物学以及社会学等等。对于自然界中的各类复杂网络系统来说,同步不仅仅是一种普遍且典型的聚集性行为,也是复杂网
具有线性约束和可分结构的凸优化模型在半定规划、图像处理、压缩感知、机器学习等领域应用广泛.如何充分利用问题的可分结构,设计有效且收敛的求解算法是最优化领域的一个热门课题.交替方向乘子法(ADMM)由于简单、易于实现以及适用范围广等优点成为应用最广泛的算法之一,并由此掀起了研究一阶分布式算法的热潮.本文针对三种不同结构的可分凸优化问题,基于ADMM和算子分裂算法基本框架设计一阶算法,并系统研究它们的
反应扩散方程(系统)的时空传播已被广泛关注和研究,因为它能够很好地描述和解释众多自然现象,如物种入侵和疾病传播等.行波解和整体解是时空传播理论的重要组成部分,对其研究具有理论意义和应用价值.需要指出的是,目前源于两个行波的整体解已有较多的结果,然而源于三个或三个以上行波的整体解的研究结果还十分有限,尤其是关于环境齐次反应扩散系统和环境非齐次扩散方程的源于三个行波的整体解的研究未曾见到任何结果,因此
MSVL(Modeling,Simulation and Verification Language)是一种时序逻辑程序设计语言,是投影时序逻辑(Projection Temporal Logic,PTL)的可执行子集。MSVL主要用于形式化建模、仿真和验证并发系统以及交互式系统,但其不能有效地建模和表达实时系统中的时间约束和中断等行为以及和时间相关的性质,使其在实时系统中应用受到限制。本文对MS
随着数字计算机技术的普及与发展,计算机控制系统已被广泛地应用到包括工业自动化系统在内的各个领域,并成为自动控制的一项核心技术。因此作为计算机控制理论基础的采样系统理论,一直都是控制领域的研究热点并得到很多学者的重视。在采样系统中,控制器在每个采样时刻决定从现在到下一采样时刻的控制量,这相当于在相邻两个采样时刻之间系统处于开环状态。如何为给定的连续时间系统设计采样控制器是采样系统理论的一个核心问题。