论文部分内容阅读
磁悬浮平台是一种微机电装置,广泛应用于半导体微细加工、电路板制造、微组装系统、光刻、高速贴片等场合,涉及到机械、电子、光学、传感与测量、伺服驱动和自动控制许多关键技术。磁悬浮平台控制的研究对生产高性能的晶片、半导体具有重要意义。 本文介绍一种新型的磁悬浮平台,应用多变量非线性的逆系统理论,对直线电动机驱动的磁悬浮平台这一多变量、非线性、强耦合的对象通过状态反馈线性化实现动态推力解耦控制,使其成为三个子系统,同时借助干扰观测器对扰动实现抑制;对悬浮控制采用带有输入解耦的H_∞控制。在高精度的6自由度定位平台中,采用三套直线伺服驱动装置,由于动子的负载不总是对称以及难以预料的一些不确定性的扰动,使各自由度的驱动装置之间产生耦合,且悬浮控制与水平推力控制之间相互影响,导致系统成为一个复杂的被控对象。对于这样一个复杂的控制对象,要想对其实现准确的控制,满足快速精密定位的要求,必须对推力各自由度进行动态解耦和悬浮的精确控制。而逆系统方法可以通过状念反馈线性化,实现对多变量、强耦合的非线性系统实现动态解耦线性化。但由于外部扰动及模型参数的摄动造成了实际对象的解耦模型与名义解耦模型间产生差异,难以达到理想的解耦效果。因此,本文在解耦的基础上设计了干扰观测器进行补偿,这种方法易于应用到实际工程中。磁悬浮控制部分采用具有输入解耦的参数不确定性H_∞控制,来抑制参数摄动对控制的影响,保证悬浮高度的精确控制。 仿真实验结果表明,采用针对推力部分应用逆系统方法,对6自由度直线驱动磁悬浮平台推力的控制进行状态反馈解耦控制,并用干扰观测器来补偿扰动;和针对悬浮部分采用基于输入解耦的参数不确定性H_∞控制方案。使系统具有良好的动态、静态性能和鲁棒性。其控制精度满足高精度制造领域要求,对今后磁悬浮平台的控制研究提供了一些观点。