论文部分内容阅读
随着技术的发展,各种半导体器件在雷达系统、自动控制系统、通讯系统、检测系统、侦察系统中得到广泛应用。由于高功率超宽带脉冲辐射可通过天线、工艺缝隙、维护设备的舱口、通风口、供电系统、导线和电缆等进入电子系统,从而导致系统暂时失灵,甚至崩溃,造成不可估量的损失。因此,研究高功率微波(HPM)脉冲对半导体器件的作用效应,以及对半导体器件工作中的干扰和影响,具有重要意义。电子系统的基本组成部分是半导体器件,而大多数半导体器件的基本组成为PN结,所以本文主要分析PN结器件的损伤机理。本文首先概述了高功率微波和PN结,包括高功率微波的概况、高功率微波武器的发展、PN结的形成及特性。并且分析了半导体器件HPM损伤机理,建立微波干扰影响的典型模型。其次,针对在PN结泊松方程求解过程中,几种常用方法存在的不足,提出一种改进算法。该算法结合求解非线性方程组的Newton迭代法与SOR(Successive Over-Relaxation逐次超松弛迭代)法,即用松弛因子对Newton迭代过程的前后两项进行加权平均,组成新的迭代公式。为进一步完善算法,在迭代公式中修改了松弛因子,采用最佳松弛因子形式。经过软件模拟验证,该算法真实可行,既保持计算的高精度,也明显地减少计算的迭代次数,提高求解过程的收敛速度。最后,数值模拟了PN结的一维稳态和瞬态响应及其HPM脉冲响应。建立了一维PN结器件模型,归一化半导体器件所满足的刚性、耦合、非线性的偏微分方程组,运用改进算法处理归一化方程组,然后运用MATLAB7.0对方程组进行了数值计算,模拟出PN结在损伤过程中不同时段的电子空穴浓度分布、电位分布及电场分布,从理论上得到半导体器件在一维情况下的损伤机理及HPM响应。