超表面对涡旋波束和高定向波束的调控研究

来源 :东南大学 | 被引量 : 0次 | 上传用户:aswangxiao
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
超表面通过局域微结构的精细设计,可以获得天然材料无法具备的独特电磁性能。基于超表面灵活自由的结构设计和电磁调控能力,本文围绕涡旋波束和高定向波束的生成及其极化控制,展开了一系列应用研究,具体研究内容和贡献如下:(1)基于各向异性超表面实现了点源激励下线极化球面波转变为任意极化的涡旋波。通过改变正交线极化波初始相位差,可以实现对出射波的极化状态控制,并通过对不同空间传播路径上的相位差异进行补偿,最终实现了涡旋单波束的拓扑荷数和极化状态的操纵。(2)提出了基于各向异性超表面的共口径涡旋多波束设计原理,每个波束的指向、极化状态、拓扑荷数可以独立设计,展示了超表面对波束的综合控制能力。由于此设计结构简单、加工成本低、性能优异,在涡旋波极化、空间复用领域具有重要的应用价值。(3)设计了一种基于超表面的折叠反射阵。利用单元结构的极化敏感性对电磁波进行选择性反射和透射,实现了多重折叠的传播路径。仿真和实验表明,该折叠反射阵在9GHz到12.1GHz有宽带匹配效果,在10.8GHz取得最大增益为28.08d Bi,最大口径效率为50.3%。(4)提出了一种新型圆极化折叠透射阵,可进一步降低天线馈源与阵面的高度,实现了宽带、超低剖面、平面化、易于集成等功能,还可以用来产生涡旋波束,在低剖面、高增益天线、圆极化卫星通信和涡旋波通信领域具有重要应用价值。(5)将空时编码超表面与涡旋波结合,提出了一种非线性涡旋波的生成方法。通过改变单元的空间初始相位和时间延迟,实现了任意两阶谐波相位的独立编码和多谐波波束调控,并通过实验验证了理论的正确性。
其他文献
广义逆理论在微分方程、数值分析、电网络分析、最优化、马尔科夫链、系统理论等众多领域有着重要应用.Moore-Penrose逆和Drazin逆是两类经典的广义逆.广义逆的发展趋于多元化,产生了许多新型广义逆.例如核逆、核-EP逆、弱群逆.基于神经网络的高速计算能力,许多文献已提供不同类型的递归神经网络来计算高阶矩阵的广义逆.本文致力于核-EP逆、弱群逆的研究及基于递归神经网络计算时变复矩阵的核-EP
随着社会的发展,人类对能源日益增长的需求与现有能源日趋减少的现状之间的矛盾已经越来越突出。能源问题已经成为每个国家,甚至是每个人类生存与发展所面临的终极挑战,开发新能源以及节能环保材料是解决该问题的重要途径。铅卤钙钛矿作为新一代半导体材料,不仅具有较长的载流子扩散长度和较低的激子结合能,且具有价格低廉、制备工艺简单等优点,迅速成为炙手可热的光伏材料。其光电转化效率在短短的几年内从3.8%提升至23
小型化、宽带化、低成本、易集成以及高性能的平面微波器件在卫星通信、移动通信、雷达通信等领域具有重要的应用。本文基于基片集成波导(Substrate Integrated Waveguide,SIW)和基片集成同轴线(Substrate Integrated Coaxial Line,SICL)技术对高性能平面振荡器和双线极化以及圆极化喇叭天线展开深入的研究。基于SIW与SICL两种平面集成导波结构
随着国家“十三五”规划以及“一带一路”倡议的持续推进,大型重要工程日益增多,基础设施领域的建设已成为驱动社会经济发展的重要支撑,结构的安全性、可靠性和耐久性都对混凝土材料性能提出了越来越高的要求。高延性水泥基复合材料(High Ductility Cementitious Composites,简称HDCC)以其稳定的应变硬化特征、超高的拉伸延性和优异的裂缝控制能力在增强结构的安全性、耐久性及可持
交通运输是国民经济中战略性、引领性、基础性产业和服务性行业,建设“交通强国”是未来我国交通运输发展的总目标。随着移动互联网时代的开启,每个用户都成为了交通信息的贡献者,用户使用智能手机来规划路线、在线叫车、搜索目的地等。大量的基于位置的数据由这些设备和应用程序每天生成,包括在线订单,轨迹信息、地图查询数据和带地理标记的签到数据等。这些超大规模的多源数据在云端进行处理和融合生成城市全时段,无盲区的交
研究背景脑胶质瘤是中枢神经系统最常见的恶性肿瘤,其发病率和死亡率逐年上升。尽管针对胶质瘤的诊断和治疗在近年取得很大进步,但是胶质瘤患者的总体生存期未见明显改善,长期生存患者更是罕见。因此,迫切需要开发新的技术和方法以提高胶质瘤的诊疗效果。纳米技术在医学领域的快速发展有望为胶质瘤提供精确的诊断和高效的治疗。纳米银(silver nanoparticles,AgNPs)因其独特的物理、化学和生物学性质
研究背景:疼痛是一种与组织损伤或潜在组织损伤相关的感觉、情感、认知和社会维度的痛苦体验,对个体的生理和心理状态都有显著的影响。越来越多的临床证据表明慢性疼痛患者伴有认知功能损伤。慢性疼痛患者的多项认知领域,包括注意力、学习记忆、信息处理速度和决策能力,均受到损害。有研究表明约2/3慢性疼痛患者表现出注意力中断、工作记忆过程受损。动物研究也证实神经病理性疼痛模型存在记忆损伤。尽管临床和动物研究均表明
高超声速气动加热问题是制约高超声速飞行器发展的关键因素,减小气动加热和做好热防护设计成为实现飞行器长时间航行亟待解决的关键技术。为了揭示高超声速气固界面能量输运机理,并提出针对气动加热和热防护问题的高效解决方案,本文采用分子动力学模拟和分子碰撞理论研究了高超声速气固界面相互作用的机理和界面能量输运过程的调控方法。实验方面,本文研究了热防护材料中石墨在不同厚度下的热导率以及热导率的调控方法。具体如下
燃烧广泛存在于能源动力、航空航天、冶金和化工等领域。准确可靠的火焰温度监测有利于提高燃烧效率、降低污染排放、保证生产安全。同时,火焰三维温度分布的准确测量既是燃烧过程机理研究的基础,也是燃烧装置设计的重要依据。基于火焰辐射光场成像的火焰温度场测量方法具有非侵入、响应时间短、系统简单、不需要信号发射装置等优点,获得了广泛关注。本文主要开展了基于光场层析成像的火焰三维温度场测量方法研究,为开发可靠的火
近年来,随着激光技术的不断发展,微纳加工技术的不断成熟,由光学微腔和机械振子组成的腔光机械系统在实验上取得显著的成果和突破。同时,随着人们对腔光机械系统研究的不断深入,人们发现其在量子信息处理、光子器件、精密测量、新型激光等方面都表现出了其特有的应用优势。因此,腔光机械系统在理论及实验上都引起了人们的广泛关注。本文中,基于腔量子电动力学的基础知识,我们研究了混合腔光机械系统中的光学非线性特性,并基