论文部分内容阅读
近年来伴随光电信息技术的快速发展,电子散斑干涉测量技术(Electronic Speckle Pattern Interferometry,ESPI)凭借其精度高、非接触、高效数据传输和全场测量等优点,正朝着微结构、精密测量、三维测量及自动化测量方向发展。传统的电子散斑干涉的相移检测技术主要有相移干涉法和傅里叶变换法,对干涉条纹图像处理后得到的相位是包裹相位,需要对其进行相位展开,增加了相移提取的运算量,引入误差。在条纹密集处的测量误差较大。光学涡旋(Optical Vortex)因为和光子的轨道角动量相联系因而可以运用到利用光镊子和光扳手对微观粒子进行捕捉、操控和旋转等微观技术领域。近年来,随着微观粒子操作量不断增加,为了满足需要,由单一的光学涡旋逐渐过度到大量光学涡旋组成的光学涡旋阵列,成为光学涡旋研究的热门。 本文将光学涡旋阵列与电子散斑干涉技术相结合,提出了一种利用光场的涡旋特性测量离面位移的新方法。采用光学涡旋干涉仪(Optical Vortex Interferometer,OVI)获取的规则涡旋阵列作为物光,在光路中加入第四束平面波作为参考光,物光与参考光干涉形成“叉”形涡旋光干涉条纹图,运用光流场理论,获得两连续图像之间的运动矢量场,对变形后的干涉条纹图经过窗口Fourier变换获取频谱图,将频谱与运动矢量场进行叠加运算,进而可以获得变形相位信息。该方法仅采用了变形前后的两幅干涉图即可确定全场相位的变化,无需进行空间相位提取,有效减小了相位解调过程中的运算量和误差。由于利用了涡旋点阵的干涉条纹图,较传统点阵测量方法提高了条纹空间频率,进而提高了测量灵敏度,同时在光流场基本公式中引入了时间参量,实现了动态形变测量。本文具体内容介绍如下: 1、介绍了光学涡旋和光学涡旋干涉仪的发展现状和应用前景,对电子散斑干涉测量技术的发展状况进行简要介绍。 2、介绍了光学涡旋的基本性质和几种具体产生方式,并且对各个产生方法的优缺点进行分析。介绍了光学涡旋点阵的几种产生方法,对光学涡旋干涉仪产生光学涡旋阵列的基本原理进行推导,通过MATLAB模拟生成光学涡旋阵列并与平面波相干射的光场分布和相位分布,分析干涉光场的干涉条纹、零值线以及光学涡旋点的特性。 3、介绍了光流场的基本概念和原理,对光流场的约束条件 Horn-Schunck算法的具体原理进行分析,并通过MATLAB函数模拟实现了Horn-Schunck算法,并在此基础上模拟获得两幅干涉条纹图像的光流场。 4、介绍了散斑场的相位奇异特性和电子散斑干涉测量的原理方法,通过MATLAB模拟两种常见的干涉相位提取方法:相移干涉法和傅里叶变换法,分别对这两种方法获得的变形相位干涉条纹图提取的包裹相位进行展开,获得变形相位。并且将光学涡旋点阵与传统电子散斑测量技术相结合,结合光流场的基本理论,模拟实现了对物体形变的全场相位测量。具有全场性,无需进行相位解调等优点。