【摘 要】
:
近年来,大系统已广泛应用于社会经济、生态环境、电力网络等许多领域中,与人们生活息息相关,使其保持良好稳定运行的控制问题成为重要课题。大系统通常由若干子系统组成,合理利用子系统间的互联和协同,可以使得子系统和互联系统的控制性能达到理想的条件,进而保证大系统的稳定运行。另一方面,Delta算子方法可以避免移位算子在快速采样中的缺点,进而将一些连续方法应用在离散域中。针对上述情况,本文结合线性矩阵不等式
论文部分内容阅读
近年来,大系统已广泛应用于社会经济、生态环境、电力网络等许多领域中,与人们生活息息相关,使其保持良好稳定运行的控制问题成为重要课题。大系统通常由若干子系统组成,合理利用子系统间的互联和协同,可以使得子系统和互联系统的控制性能达到理想的条件,进而保证大系统的稳定运行。另一方面,Delta算子方法可以避免移位算子在快速采样中的缺点,进而将一些连续方法应用在离散域中。针对上述情况,本文结合线性矩阵不等式方法与稳定性理论,对Delta算子系统的协同状态反馈控制问题进行研究。本文主要包括以下几个方面:(1)针对两个独立的Delta算子系统,提出协同状态反馈控制方法。首先,考虑独立Delta算子系统,利用状态反馈控制器使子系统互联成为闭环系统。其次,引入新的附加等式条件,放宽了已有研究对辅助等式条件中矩阵参数与线性矩阵不等式中矩阵参数必须一致的要求,适用于更一般的情况。通过线性矩阵不等式技术得到互联系统协同状态反馈控制律,并通过稳定性理论证明所提控制方法的可行性。最后,对两个子系统进行仿真,结果表明互联系统在所设计的协同状态反馈控制方法作用下可以稳定运行,且相比已有文献求解方法具有更低的保守性。(2)基于上述研究,针对N个独立Delta算子系统,给出协同状态反馈保性能控制器设计方法。首先,通过设计相应的状态反馈控制器,使Delta算子系统互联成为闭环系统。其次,为使系统更加高效的运行,引入优化性能指标的概念,基于线性矩阵不等式技术,提出互联闭环系统协同状态反馈保性能控制律设计以及闭环系统稳定的充分条件,并给出优化性能指标的设计方法。最后,仿真结果表明了所设计的优化方法相比(1)中所设计的可行方法,收敛速度更快且需要的控制成本更低。(3)基于上述研究,进一步考虑含有模型不确定性的N个Delta算子线性系统,提出协同量化反馈保性能控制方法。首先,利用含有动态量化的状态反馈控制器将不确定Delta算子系统互联成为闭环系统。接着,基于H?lder不等式和线性矩阵不等式方法,提出协同量化反馈保性能控制律,使得不确定系统达到稳定状态,并给出优化性能指标上界设计方法。最后,通过数值算例验证了所设计的控制方法可以使含有模型不确定性的系统达到稳定状态。
其他文献
准确分析和判断脑组织的具体分布是医生制定有效治疗方案的基础保证,而其中脑图像分割又是脑定量分析图像的关键步骤。有限混合模型是图像分割中应用最广泛的模型之一。然而,受到一些因素的影响,脑MR图像中可能存在一些灰度不均匀伪影和噪声,这导致脑MR图像的直方图可能服从重尾分布或非对称分布。所以,传统的有限混合模型,如高斯混合模型,在分割此类图像时难以获得准确的分割结果。针对这些问题,本文在有限混合模型基础
图像分割是计算机视觉的核心问题之一,旨在为每个像素分配一个类标签,在交通、军事、医学、遥感等领域应用广泛。随着各个领域内硬件设备不断发展,人们需要处理的图像越来越多样化。然而,对于普通拍摄或医学领域的小样本图像分割任务,传统分割方法的结果常受到各种噪声影响,图像的分割质量欠佳。而在遥感领域的分割任务中,由于遥感图像数据庞大、尺度多样且背景复杂,人们常借助基于深度学习的方法进行图像分割。同时,物体遮
近年来,许多专家学者对Hessian型方程及不等式做了大量研究,得到了解的存在性或不存在性结果.这些Hessian型方程及不等式不仅在偏微分方程理论中具有重要的研究价值,而且在几何问题和最优运输问题中也有许多应用.本文主要研究的是几类共形Hessian商不等式全局正解的不存在性,分为椭圆型、抛物型和双曲型.首先,我们研究了单个椭圆型共形Hessian商不等式以及耦合的Hessian商不等式组全局正
我国是世界上受台风影响最严重的国家之一,台风登陆的地点几乎遍布从华南到东北的沿岸地带,因而对台风的精准预测预报显得尤为重要。自20世纪90年代以来,虽然我国在台风路径的预报方面取得了显著的进展,但是在台风结构和强度变化预报方面进展较缓慢,无法满足不断提高的防台减灾需求。在此背景下,研究台风强度变化和非对称结构对台风强度的影响是关系到国计民生的重要课题,是科学研究的重中之重。因此,本文研究了台风强度
算子的不动点理论是非线性泛函分析的重要组成部分,在方程求解、经济学、优化理论、数学规划及控制论中都有着广泛的应用,是众多学者关心的课题.因此,对不动点理论的研究有着重要的理论意义和实际价值.本文在一致凸度量空间和Hilbert空间中研究了几类压缩型算子不动点的迭代逼近、迭代算法的稳定性及算子的数据依赖性.全文一共分为六章:第一章主要介绍了本文的研究背景和研究现状、主要工作和所需的基本定义及结论.第
由于欧式空间中的凸集构成的集族对任意交和定向并封闭,我们可以像拓扑一样对凸集族进行公理化定义,得到抽象凸结构的概念.实际上,除了欧式空间,凸结构还广泛存在于序与格论、抽象代数、度量空间和图等结构中.现如今的凸结构理论已成为一门新兴的数学分支,并且在格论、图论、工程和最优化等领域中都有十分重要的应用.几乎所有基于集合和集族的数学结构都有一些数值特征表征相应结构的特性,例如矩阵的秩、向量空间的维数、拓
随着分数阶模型在现代科学工程领域中的广泛应用,分数阶方程已经成为描述复杂力学和物理行为的重要工具之一.分数阶Ginzburg-Landau方程是在物理学界与数学界得到广泛关注的非线性演化方程之一.由于分数阶微积分具有历史依赖性或空间非局部性,所以分数阶方程的解析解很难得到,因此通过数值方法进行高效求解变得尤为重要.本文运用有限差分法对时间分数阶及时空分数阶Ginzburg-Landau方程的定解问
近年来,具有对合映射的环已经成为代数学上重要的研究对象,其主要的研究方向有四个方面:一、研究具有对合映射的环的各类特殊性质;二、研究与幂等元密切相关的具有对合映射的环;三、研究Baer*-环及其相关环的性质;四、研究对合环上的广义逆和特殊元素.本文主要就第一种方向进行研究,讨论*-Armendariz环的性质,引入*-诣零McCoy环和*-zip环的概念,对它们的性质进行刻画,讨论它们的扩张问题以
近年来,针对具有压电效应的压电材料的研究成为一个新的研究领域.早期有研究者基于Maxwell方程和Mindlin-Timoshenko理论分别对电磁耦合、梁力学行为进行描述,进而建立了压电梁结构的数学模型.在此基础上,部分研究者对于不同压电梁模型及其变形形式的渐近性和稳定性深入研究,但涉及到时滞和记忆影响下的压电梁系统的相关成果目前较少.而在实际的物理、化学和控制系统等应用中,尤其在具有挑战性的通
关于具有相同表示函数的整数集合的研究是数论研究中的重要课题.本文在前人的基础上考虑关于具有相同表示函数的整数集合的结构问题.本文考虑了一个新的研究问题并在前人的研究基础上对这个问题做出回答.设N是全体非负整数集合,对于集合S?N,整数n ∈ N,令RS(n)为整数n表示成集合S中有序的不同元素的和的方法数.设集合A为在二进制表示下包含偶数个“1”的所有非负整数构成的集合,B=N\A.对任意的正整数