余模和模的Gorenstein性质

来源 :南京大学 | 被引量 : 0次 | 上传用户:lfw_1988
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在经典同调代数中,模的投射维数、内射维数和平坦维数是重要且基本的研究对象。作为模的投射维数的概念的推广,Auslander和Bridger于1969年在文献[3]中对双侧Noether环R上的有限生成模定义了G-维数的概念(又见文献[2])。几十年后,Enochs,Jenda和Torrecillas[20,21,23]推广了Auslander和Bridger的思想。他们定义了Gorenstein投射,内射和平坦模,并引入了任意模的Gorenstein同调维数的概念。Avramov,Buchweitz,Martsinkovsky和Reiten证明了,对Noether环上的有限生成模M,M是Gorenstein投射的当且仅当它的Gorenstein投射维数是0[10]。  近年来,这些Gorenstein模已经有了很多形式的推广。特别地,Asensio,Enochs等人([1,24])在余模范畴中定义了Gorenstein内射和投射余模,并且研究了余模的Gorenstein内射和投射维数。而Bennis等人([7])引入了(X)-Gorenstein投射模的概念,其中(X)是包含投射模的模类。  本文中,我们在任意的余代数C上定义并研究了Gorenstein余平坦和弱Gorenstein内射(余平坦)余模。同时,我们引入并研究了y-Gorenstein内射右R-模和y-Gorenstein平坦左R-模,其中y是包含所有内射右R-模的右R-模类。最后,我们研究了Gorenstein平坦(余挠)维数,FP-内射(FP-投射)维数和余挠对在A-Mod和A#H-Mod之间的关系。  全文共分四章,内容如下:  第一章是引言,主要介绍了问题的背景和预备知识。  在第二章中,我们在任意的余代数C上定义了Gorenstein余平坦和弱Gorenstein内射(余平坦)余模,并且证明了,在左半完全余代数C上,左C余模M是(弱)Gorenstein余平坦余模当且仅当M是(弱)Gorenstein内射余模。同时,我们研究了弱Gorenstein内射余模预覆盖和预包络的存在性问题。我们证明了在左半完全余代数C上,任意的左C余模都有一个弱Gorenstein内射预包络(覆盖)。  第三章我们引入了y-Gorenstein内射右R-模和y-Gorenstein平坦左R-模,其中y是包含所有内射右R-模的右R-模类。我们证明了关于Gorenstein投射,内射和平坦模的主要结果对于X-Gorenstein投射右R-模,y-Gorenstein内射右R-模和y-Gorenstein平坦左R-模仍然成立。  设H是域k上的有限维Hopf代数,A是左H-模代数。在第四章中,我们证明了在右凝聚环A(或任意环A)上,如果A#H/A可分并且(φ):A→A#H是可裂的(A,A)双模单同态,那么l.Gwd(A)=l.Gwd(A#H)(或l.cotD(A)=l.cotD(A# H)和l.Gcd(A)=l.Gcd(A#H))。同时,我们研究了FP-内射(FP-投射)维数在有限维Hopf代数下的作用。我们证明了在任意环A上,如果A#H/A可分并且(φ):A→A#日是可裂的(A,A)双模单同态,那么l.F P-dim(A)=l.F P-dim(A#H),并且lfpD(A)=l fpD(A#H)。最后,我们给出了余挠对在A-Mod和A#H-Mod之间的关系。
其他文献
Gorenstein同调代数是一种相对同调代数,自1969年起,已得到越来越多的专家学者关注。在交换Noether环上,Foxby,Golod和Vasconcelos分别对半对偶化模(以不同的名字)独立地进行了研究
作为一门重要的交叉学科,数学物理反问题的研究已经遍及医疗,地质工程,信号探测等各个应用领域.绝大多数的反问题都是不适定的,为了获得稳定解必须采用一定的正则化策略.本文主要
Artin代数表示论主要是根据其模范畴的性质刻画代数的。为此,表示不变量在代数表示论中发挥着重要的作用。本文致力于研究在环的优化扩张下的一些表示不变量。特别地,本文引入