【摘 要】
:
氮杂环化合物是药物中最重要的结构成分之一。另一方面,引入氟原子或氟代烷基可以显著改善药物分子的药理特性,例如亲脂性和代谢稳定性。用含氟基团来修饰氮杂环化合物,可能获得协同作用,从而进一步改善药物分子的整体功效。因此,本文主要以三氟乙基亚磺酸钠和一氟碘甲烷作为亲电试剂,分别研究了它们与氮杂环化合物的亲电含氟官能团化反应。此外,还利用电化学合成技术实现了C-S键的偶联反应。首先,研究了在还原剂亚磷酸二
论文部分内容阅读
氮杂环化合物是药物中最重要的结构成分之一。另一方面,引入氟原子或氟代烷基可以显著改善药物分子的药理特性,例如亲脂性和代谢稳定性。用含氟基团来修饰氮杂环化合物,可能获得协同作用,从而进一步改善药物分子的整体功效。因此,本文主要以三氟乙基亚磺酸钠和一氟碘甲烷作为亲电试剂,分别研究了它们与氮杂环化合物的亲电含氟官能团化反应。此外,还利用电化学合成技术实现了C-S键的偶联反应。首先,研究了在还原剂亚磷酸二乙酯和路易斯酸三甲基氯硅烷的参与下,三氟乙基亚磺酸钠与吲哚、吡咯、噻吩的亲电三氟乙硫基化反应。机理方面,三氟乙基亚磺酸钠被亚磷酸二乙酯还原形成三氟乙基亚砜,然后重排形成三氟乙硫基醇。在三甲基氯硅烷的作用下,三氟乙硫基醇产生具有更高反应活性的三氟乙硫基氯化物,其对吲哚进行亲电进攻,从而得到最终产物。同时研究了三氟乙基亚磺酸钠和富电子芳烃的反应,能以38%-72%的产率获得相应的产物。在相同反应体系下,苯硫酚类化合物也能与其发生亲电反应,得到三氟乙硫基化产物。反应操作简单,底物范围广,官能团耐受性好。此外,研究了三氟乙基亚磺酸钠与芳香族化合物的三氟乙基化反应。其次,利用一氟碘甲烷,首次开发了氟甲氧基甲基化氮杂环化合物的合成方法。在碱性条件下,一氟碘甲烷先是和氮杂环化合物发生亲电取代反应,生成的一氟甲基化中间体迅速水解后继续和一氟碘甲烷进行亲电反应,最终得到氟甲氧基甲基化产物。吲哚、咔唑和1H-吲唑都可以和一氟碘甲烷完成该转化过程,能以46%-84%的产率得到含有氟甲氧基甲基的产物。最后,采用电化学合成技术,研究了在恒定电流下芳基偶氮砜与硫醇的C-S键偶联反应。此反应条件温和,无需氧化剂、催化剂、过渡金属和碱,且反应底物范围广。无论是芳基硫醇,杂芳基硫醇,烷基硫醇还是苯硒酚,都可以与芳基偶氮砜反应,以66%-91%的产率生成相应的硫(硒)醚。其中葡萄糖衍生的硫醇和L-半胱氨酸也能以中等产率得到相应的产物,这为此方法在药物合成领域的应用提供了可能性。自由基捕获实验和循环伏安实验证明了该反应是自由基参与的过程。通过控制恒定电流的大小,可以选择性地生成硫醚/亚砜产物,这大大增加了该反应的实用性。此外,在相同反应体系下,芳基硼酸酯也可以通过芳基偶氮砜和联硼酸频那醇酯反应获得。
其他文献
建设海洋强国,保卫海疆安全,需要一支强大的海军。相比于导弹武器系统,火箭炮武器系统效费比高,易于使用与维护,一直是各国军舰的标配。随着国际形势和军事技术的发展,现代战争对舰载火箭炮武器系统的射击精度、打击密度以及快速响应能力,提出了更高的要求。交流位置伺服系统用于火箭炮高低角和方位角的自动操瞄,是高精度武器系统的关键技术之一。本论文以某型号舰载火箭炮的研制为工程背景,针对其交流位置伺服系统的建模与
在水生环境中,鱼类具有不同的生态位并且面临着不同的生存压力,因此在数百万年的自然选择下形成了丰富的物种多样性。鱼类卓越的游动能力和对水生环境的极强适应性是长期进化后获得的优化结果。为了适应环境和提高游动性能,鱼类发展出了不同的形态结构和游动方式。在此基础上,鱼类还会采取其他的一些方式来进一步优化推进性能,例如,间歇游动和集群游动。与传统的螺旋桨推进方式相比,自然界中的推进方式使得鱼类具有高效率、高
社区是城市的细胞,不仅为居民提供生活和休息的场所,而且具备社会的一般性功能。伴随社会主义市场经济深入发展,社会转型加速,城市化进程加快,社会流动性愈加强烈,中国城市社区呈现出陌生人化的特点,社区治理过程中出现诸如居民关系的疏离化、交往的功利化、社区共同体精神匮乏等消极现象。作为社会主义核心价值观的友善观是对公民个体的价值观要求,对城市社区中的人际互动发挥积极意义。城市社区居民友善观培育既是社会主义
异构材料通过将软硬相相结合的方式,在实现高强度的同时拥有良好的塑性,因而获得了广泛的关注。传统强化理论不能完全解释异构所带来的强化效应。目前,普遍认为,其根本原因在于异构材料在变形过程中软硬相内应变分配不均匀,导致软硬界面处形成应变梯度,需要额外的几何必须位错(geometrically necessary dislocations,GNDs)来协调应变,从而产生额外的应变硬化,形成异变诱导强化(
细胞死亡和炎症反应之间存在着密切又复杂的关系,两者相互促进又相互制约,其交互作用在许多疾病的病理发生发展过程中扮演着关键角色。RIP1激酶是调控细胞凋亡、细胞程序性坏死和炎症反应的关键蛋白之一,是决定细胞命运走向的关键分子。研究表明RIP1激酶在多种与细胞死亡和炎症反应密切相关的疾病病理过程中扮演重要角色,但其在代谢性炎症疾病包括非酒精性脂肪肝炎中的作用尚不清楚。非酒精性脂肪肝炎是多因素造成的代谢
自然语言处理(NLP)是计算机科学中一项充满挑战性的研究,广泛应用于文本挖掘领域。通过对人类语言处理过程,它能使计算机理解文本文档蕴含的语义。自然语言处理(NLP)技术为针对文本文档的信息提取与文件分类提供了很好的发展机会。主题建模是自然语言处理中解决文本挖掘、发现潜在数据以及探寻数据和文本文档之间关系的最强有力技术之一,基于主题建模的自然语言处理技术已经引起了软件工程、传媒学、医学、语言学等领域
超材料是一类基于人工设计结构的复合材料,呈现出天然材料所不具备的超常物理性质。基于超材料的完美吸波体因在国防和电磁防护等领域有广阔的应用前景而备受关注。电磁隐身和电磁防护不仅需要吸波体具有强的吸波能力,还需要吸波体在工作带宽、材料柔性和重量体积等方面满足实用性要求。宽带化、小型化、柔性化的吸波体设计机理和实现方法仍然是亟待解决的科学和工程问题。本论文根据上述问题及实际应用需求,从超材料吸波原理出发
分数阶微积分因引入带有幂律记忆核的卷积积分而被广泛应用于描述事物的记忆及遗传特性。近年来,分数阶微积分已在反常扩散、系统控制及经济学等领域的研究中取得诸多成功实践,促使分数阶微分方程在描述系统动态演化过程蕴含的全局相关性和历史依赖特征中发挥着不可替代的作用。然而,非决定性因素广泛存在于现实系统的演化过程之中,当反映系统某一非决定因素的样本数据充足时,则可构建以随机过程为基础的动力学模型进行描述。而
磁流变脂是一种在外加磁场调控下能够实现流变性能(如粘度和储能模量等)可逆变化的智能材料,通常由软磁性颗粒分散在粘弹性的润滑脂基体中制备而成。得益于粘弹性润滑脂基体的使用,磁流变脂在无磁场条件下呈现出类似于软物质的状态,使得其可以有效的克服传统磁流变液不可避免的沉降和泄露等问题。而在施加一定磁场后,磁流变脂内部的铁磁颗粒可以突破润滑脂基体的约束,沿磁场方向聚集排列成一定形式的微观结构。伴随着磁场调控