【摘 要】
:
伴随着表面等离激元共振(Surface Plasmon Resonance,SPR)传感技术的不断发展,光子晶体光纤(Photonic Crystal Fiber,PCF)表面等离激元共振传感器也日益成熟,在生物医学、环境监测等领域拥有巨大的发展前景。本文设计了一种准D型PCF-SPR传感器,利用COMSOL Multiphysics数值分析软件对其传感特性进行了分析,并对其结构参数进行了优化。本
论文部分内容阅读
伴随着表面等离激元共振(Surface Plasmon Resonance,SPR)传感技术的不断发展,光子晶体光纤(Photonic Crystal Fiber,PCF)表面等离激元共振传感器也日益成熟,在生物医学、环境监测等领域拥有巨大的发展前景。本文设计了一种准D型PCF-SPR传感器,利用COMSOL Multiphysics数值分析软件对其传感特性进行了分析,并对其结构参数进行了优化。本论文的主要内容如下:(1)介绍了PCF-SPR传感器的研究背景、目前的研究进展及未来发展的趋势。PCF-SPR传感器相比于传统的光纤传感器具有很多独特的优势,随着光子晶体光纤拉制技术的不断成熟,PCF-SPR传感器的应用将更加的广泛。(2)介绍了表面等离激元共振传感技术和光子晶体光纤的基本理论。对基于SPR技术的光子晶体光纤传感器的传感机理进行了详尽的分析。(3)介绍了在光子晶体光纤领域常用到的数值仿真方法——有限元法(Finite Element Method,FEM)。介绍了COMSOL Multiphysics多物理场数值仿真软件和基本的仿真步骤。(4)提出了准D型PCF-SPR传感器的模型。通过将光子晶体光纤的纤芯的上移使传感器的制造工艺得到了简化,同时相比于一般的D型PCF-SPR传感器,本文设计的传感器在结构上也得到了增强。在纤芯的两侧引入两个椭圆形的空气孔,增加了Y方向上的双折射效应,使得基模的约束损耗得到增强。采用ITO薄膜作为传感材料,实现了传感器在近红外波段的传感,增加了传感器的适用性。在ITO薄膜表面上覆盖了一层石墨烯,由于石墨烯自身具有的特殊结构,增加了传感器对大生物分子的吸附能力,从而可以使设计的传感器在生物监测领域得到更广泛地应用。(5)在数值仿真的基础上对提出的传感器模型进行了优化。通过对椭圆率、抛光深度、ITO薄膜厚度、石墨烯层数等参数的优化,使设计的传感器达到了优良的性能。传感器的折射率监测范围为1.21到1.32,最大灵敏度达到了12000 nm/RIU(Refractive Index Unit,RIU),最大分辨率为8.33×10-6 RIU。
其他文献
随着人工智能技术的深入发展,移动机器人在社会生活各个领域的作用越来越突显。其中,SLAM技术是移动机器人研究领域一项至关重要的技术。SLAM技术的重要特征就是“同时”,即定位与地图构建同时进行,通过这一技术,结合路径规划算法移动机器人即可实现自主运动。而无论是机器人的定位还是环境地图的构建,都需通过外部的传感器对周围环境的变化进行实时的感知。其中激光雷达以其精准度高、获取数据速度快以及扫描范围广等
在第五代移动网络快速普及的背景下,互联网中吞吐的海量流量数据种类繁多,增加了网络流量分类问题的难度,对分类器的速度和准确性提出了更高的要求。如何通过分析网络流量实现网络态势感知,及时发现网络异常情况并采取针对性处理措施,对于实施网络安全审查制度,加强网络安全管理,检测和抵御网络入侵,维护国家网络安全等都有着重要意义。传统的基于端口的分类方法在日益复杂的网络环境中分类性能不可靠,基于深度包检测技术的
移动机器人实现自身的精确定位是其执行任务的前提条件之一。近年来,基于视觉信息的定位技术已成为移动机器人自主导航定位的重要研究课题,但是在图像特征不够丰富或者光照不好的情况下,会出现特征丢失的问题,从而造成方法的鲁棒性差。惯性测量单元(Inertial Measurement Unit,IMU)传感器不受光照的影响,在视觉传感器快速移动和图像特征缺失的情况下,依然能精确的输出测量结果,同时相比视觉传
随着信息技术和网络技术的快速发展以及低成本的3D传感器(如Kinect)和光场摄像机的日益普及,无人驾驶、智慧城市、虚拟现实(Virtual Reality,VR)、增强现实(Augemented Reality,AR)等技术已经成为学术与工程应用上的热点,而上述技术的快速发展源自计算机对其周围环境的感知能力不断增强。人们希望计算机像人类一样观察真实场景,并智能地给出解决方案,即使用视觉传感器将真
近年来,多智能体系统的一致性广泛应用在集群问题、编队控制等多种科学和工程问题中.解决多智能体系统一致性问题的基本方法是:依据系统设计合适的协议或算法,使得多智能体系统中智能体的关键量最终达到一致.目前,对一阶和二阶的多智能体系统一致性问题的研究已经比较成熟,但对于二阶多智能体系统的群一致性,尤其是综合考虑连续时间、异步采样等环境的研究还不够完备.因此,本文选择异步多智能体系统的群一致性作为研究方向
神经网络(Neural networks,简记作NNs),是对生物神经网络的结构和功能进行模拟与抽象而建立的数学模型。它克服了计算机对非结构性信息处理的局限性,具有重要的实际应用价值。随科技的发展,单纯的实数和复数神经网络已不足以满足应用的需求了,基于此,实数和复数神经网络的延伸——四元数神经网络(Quaternion-valued neural networks,简记作QVNNs)成为了研究热点
本文深入研究了多智能体系统的一致性问题。在分数阶多智能体系统环境下,主要解决了一般线性系统通过事件触发策略实现自适应一致性问题,进一步在分数阶系统下首次提出了自适应自触发算法;在整数阶多智能体系统环境下,通过设计新的控制器使得链式系统实现了在固定时间内达到一致性。在分数阶多智能体系统环境下,基于自适应控制,分数阶一般线性多智能体系统实现了一致性。多智能体之间的通讯结构是无向连接的,在这个基础上我们
稳态热方程的参数识别问题是反问题领域的研究热点,具有重要的理论和工程意义。本文主要讨论该类问题的Bayes反演方法。Bayes方法是近年来处理反问题的重要手段,相比于传统正则化算法,它有两大优势:1.Bayes方法不仅给出解的具体估计,还给出其不确定性信息,这为工程实际应用决策者提供可靠性分析;2.很多基于它的算法是无导数的,这为其工程实际应用提供便利。基于以上优点,Bayes方法已经被广泛应用于
无人机、机器人等运动载体的集群协同控制在工农业生产、灾难救援、地质勘测等领域发挥着重要的作用。一致性是集群系统跟踪、编队等协同控制行为的基础。在实际应用中,运动载体在不同介质中的运动动态普遍呈现为分数阶微分方程的形式,其模型受到各种因素的影响,存在不确定性。因此研究分数阶模型和不确定性影响下的集群一致性问题具有重要意义。本文首先针对具有模型不确定性的整数阶领导者,在跟随者具有模型不确定性和受到未知
机器人在人类日常工作和生活中的应用早已相当广泛,其中的一个领域为下肢外骨骼机器人方向,应用场景遍布医疗、军事和工业,具体可分为助力和康复训练机器人。本文选取下肢外骨骼这一课题正是为了分析参数在人机耦合力中的作用以及帮助行走不便的人实现助力和康复训练为目标。在对国内和国外外骨骼机器人发展现状了解后,确立了以人机耦合力为目标在轨迹跟踪中进行分析,为以后的更加深入的研究奠定一定的基础。本文主要做以下工作